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Automatic translation validation across the unoptimized intermediate representation (IR) of the original source

code and the optimized executable assembly code is a desirable capability, and has the potential to compete

with existing approaches to verified compilation such as CompCert. A difficult subproblem is the automatic

identification of the correlations across the transitions between the two programs’ respective locations. We

present a counterexample-guided algorithm to identify these correlations in a robust and scalable manner.

Our algorithm has both theoretical and empirical advantages over prior work in this problem space.
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1 INTRODUCTION

Translation validation (TV) [Pnueli et al. 1998] verifies the result of every compilation; this approach
stands in contrast with certified compilation where the compiler’s logic is verified for all possible
input programs [Leroy 2006]. Unlike certified compilation where the compiler usually needs to be
written from scratch, TV has the potential to reuse an existing off-the-shelf compiler and validate
its input-output behavior for every compilation. For most programs/compiler-transformations,
it usually suffices to restrict oneself to bisimilarity checking, where the algorithm proceeds by
correlating the transitions (or paths) in the two programs and identifying inductive relational
predicates (or invariants) between variables (state-elements) of the two programs at the endpoints
of the correlated transitions [Pnueli et al. 1998]. We call the endpoints of the correlated transitions,
correlated PCpairs, given that they are formed by pairing two program locations or PCs of the
respective programs. If these correlations and relational invariants ensure equivalent observable
behavior (e.g., identical sequence of I/O events, identical return value and returned heap state),
then we have obtained a proof (or witness) of equivalence (and bisimilarity). This proof, involving
correlations and invariants, can be represented either as a (bi)simulation relation [Milner 1971;
Necula 2000; Pnueli et al. 1998] or as a product program [Zaks and Pnueli 2008], both of which are
equivalent representations.
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int a[100][50];

C0: void nestedLoop (){

C1: int sum = 0;

C2: for(int i=0; i<100; i++) {

C3: for(int j=i; j<50; j++) {

C4: sum += a[i][j];

C5: }

C6: }

C7: return sum;

C8: }

(a) C program

A0: nestedLoop:

A1: r1 = 0; r3 = 0

A2: if (r1 >= 50) goto A7

A3: r2 = r1

A4: r3 += a[r1][r2]

A5: r2++

A6: if (r2 != 50) goto A4

A7: r1++

A8: if (r1 != 100) goto A2

A9: ret r3

(b) (Abstracted) Assembly program

C0 C2 C3 C4 EC
sum=0
i=0

true

j=i

i < 100 j < 50

!(i < 100)

i++

!(j < 50)

sum+=a[i][j]
j++

true

(c) C program CFG. C0 is the entry node

and EC is the exit node

A0 A2 A4 A6 A8 EA

r1=0
r3=0

true

r2=r1

!(r1 >= 50)

r1++

r1 >= 50

r3+=a[r1][r2]
r2++

true

r1++

!(r2 6= 50)

r2 6= 50

r1 6= 100

!(r1 6= 100)

(d) Assembly program CFG. A0 is the entry node and

EA is the exit node

C0,A0 C2,A2 C4,A4 EC,EA
A0-A2

C0-C2

A2-A8-EA

C2-C3-C2-EC

A2-A4

C2-C3-C4

A4-A6-A4

C4-C3-C4

A4-A6-A8-A2

C4-C3-C2

(e) Product-Graph possibility #1

C0,A0 C4,A2 C4,A4 C3,A2 EC,EA
A0-A2

C0-C2-C3-C4

A2-A4

ǫ

A4-A6-A4

C4-C3-C4

A4-A6-A8-A2

C4-C3-C2-C3

A2-A4

C3-C4

A2-A8-EA

C3-C2-EC

(f) Product-Graph possibility #2

Node Invariant

(C0,A0) HC = HA

(C2,A2) (sum, i, HC) = (r3, r1, HA)

(C4,A4) (sum, i, j, HC) = (r3, r1, r2, HA)

(EC,EA) (sum, HC) = (r3, HA)

(g) Inductive invariants for product-CFG #1

Node Invariant

(C0,A0) HC = HA

(C4,A2) (sum, i, j, HC) = (r3, r1, 0, HA)

(C4,A4) (sum, i, j, HC) = (r3, r1, r2, HA)

(C3,A2) (sum, i, j, HC) = (r3, r1, r1, HA)

(EC,EA) (sum, HC) = (r3, HA)

(h) Inductive invariants for product-CFG #2

Fig. 1. A C program (left) and an equivalent abstracted assembly program (right).

Figures 1a and 1b show an equivalent pair of programs, and in figs. 1c and 1d, the programs
are represented as Control Flow Graphs (CFG) where each node represents a PC and each edge
represents a transition. Each CFG edge is labeled with an edge condition (which specifies the
condition under which that edge is taken) and a transfer function (which specifies the new state at
the destination of the edge). In the figure, the edge condition is shown above the transition edge,
and the transfer function is shown inside a box below the transition edge. In this example and in the
rest of the paper, we use the following correspondence between a program’s PC labels and its CFG’s
node names: (1) For a general statement, the PC label represents the start of the corresponding
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Counterexample-Guided Correlation Algorithm for Translation Validation 221:3

statement in the program; (2) For a for loop construct, the PC label corresponds to the condition
test which is also the loop head; (3) EC and EA represent program exits for the two programs.
In figs. 1e and 1f, we show two distinct product programs: a product program correlates the

transitions in one program with the transitions in another program, as though they execute
correspondingly in lockstep. We use the CFG representation to show the product program, which
we also call a product-CFG; multiple product-CFGs are possible for any same pair of programs. Each
edge in a product-CFG encodes the PC-transition correlations across the two programs. Given a
product-CFG, equivalence checking involves inferring inductive invariants at each node of the
product-CFG (e.g., using an off-the-shelf invariant inference algorithm) and then checking if the
inferred invariants are strong enough to prove equivalent observable behavior at intermediate
program locations (e.g., identical arguments to calls to an external function) or at program exit (e.g.,
identical return values and identical heap states). Figures 1g and 1h show the inferred inductive
invariants at each node in the two product-CFGs in figs. 1e and 1f respectively. In this example, both
product-CFGs can prove equivalent observable behavior of the two programs at exit because both
the return value sum and the heap HC in the C program are identical to corresponding state-elements
r3 and HA in the assembly program.
There exists a trade-off between the amount of computational effort spent in identifying the

łrightž product-CFG and the effort spent in identifying the required inductive invariants. For most

programs/compiler-transformations, there exists a product-CFG where the required invariants (to

prove equivalence) are formed by simply relating the bitvector and array values through equality,

inequality, and affine relations. This claim has been observed and assumed by multiple independent
prior research efforts [Churchill et al. 2019; Dahiya and Bansal 2017a; Gupta et al. 2018], and we
refer to this as Observation-A in the rest of the paper. Thus, if we fix our invariant inference
algorithm, the problem of translation validation reduces to identifying the required product-CFG.

Each edge in a product-CFG encodes correlated transition paths in the two respective programs.
Another relevant observation (Observation-B) is that for most programs/compiler-transformations,

we can bound the maximum length of a path that needs to be correlated within a single CFG edge. For
example, compilers bound the unroll factor while transforming programs. In the rest of the paper,
we use𝐶 to denote the source program (in C language in our setting) and 𝐴 to denote the compiled
program (in assembly language in our setting). To bound correlated path lengths, we introduce a
parameter, 𝜇𝐶 , which represents the maximum number of times a PC may appear in a program path
of 𝐶 that is correlated through a product-CFG edge. We only count a PC to łappearž in a program
path if it is present as the head of an edge in that path. For example, the path (C4-C3-C4) can be
correlated at 𝜇𝐶 = 1 because both C3 and C4 appear only once in it. On the other hand, the path
(C4-C3-C4-C3-C4) cannot be correlated at 𝜇𝐶 = 1 because C4 appears twice in it. While the use
of 𝜇𝐶 lends finiteness to the space of potential product-CFGs, this space is still exponential in the
size of the program. This search space is further reduced due to the following two observations:

• Observation-C: It usually suffices to restrict the correlated PCs (that constitute the PCpairs) to
the heads (first instruction) and tails (last instruction) of the basic blocks of one program’s CFG
to the loop heads of the other program’s CFG. Intuitively, even if the łideal" product-CFG (that
yields a provable bisimulation) required a PC 𝑝 in the middle of a basic block to be correlated, a
product-CFG that instead correlates either the head or the tail of the corresponding basic block
(that contains 𝑝) also yields a provable bisimulation in most cases. Further, we expect the loop
heads to have correlations with the head or tail of some basic block in the other program. In
other words, we rely on our invariant inference procedure to be able to bridge this gap between
the ideal correlation and a correlation that only considers loop heads in one program and basic
block heads and tails in the other.
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• Observation-D: For a given PCpair, it is rare for an outgoing path in 𝐴 to be correlated with
more than one paths in 𝐶 such that these (two or more) correlated paths in 𝐶 have different
endpoints, but not vice-versa. Intuitively, this is so because optimizers may specialize program
paths in𝐶 to yield two or more versions of the same path in the optimized implementation (e.g.,
loop splitting, peeling, unrolling, unswitching). Conversely, it is relatively rare for an optimizer
to combine two different paths in unoptimized 𝐶 into a single path in optimized 𝐴. This latter
category of łdespecializingž transformations are usually only relevant while optimizing for
code size, and are relatively rare.

These four observations (A-D) prune the search space of product-CFGs in the quest for identifying
a provable bisimulation. Even so, the number of potential product-CFGs are in the order of 1014 for
𝜇𝐶 = 8 for the pair of programs in fig. 1. If we optimistically assume that for a given product-CFG, it
takes an average of only one second to infer the invariants (and check equivalence of observables),
a naive exhaustive search algorithm would require close to 106 years to compute equivalence for
this small example.

1.1 Contributions

We present a counterexample-guided algorithm, called Counter1, to efficiently search this space of
potential product-CFGs to yield a provable bisimulation relation. We demonstrate the effectiveness
of Counter by statically computing proofs of equivalence across unoptimized LLVM IR programs and
their optimized and vectorized x86 assembly code. The x86 code is generated using -O3 -msse4.2

flags in modern production compilers. The programs used to evaluate Counter are drawn from
the TestSuite for Vectorizing Compilers (TSVC) [Maleki et al. 2011] and also include complex loop
nest patterns drawn from the LORE repository [Chen et al. 2017]. To our knowledge, Counter
is the first algorithm that can compute equivalence across both vectorizing transformations and
register realloaction in the presence of multiple loops with potential nesting and control-flow in
both programs. An online demo of the equivalence checking tool based on Counter is available at
[cou 2020].

1.2 Related Work

This identification of the product-CFG (or correlation) for the construction of a bisimulation
proof has been investigated by multiple researchers previously. Early efforts used simple branch
correlation heuristics [Necula 2000; Zuck et al. 2003] to construct the product-CFG. Subsequently,
data-driven heuristics were proposed [Sharma et al. 2013] to identify a one-to-one correspondence
between the loop heads in 𝐶 and 𝐴. All such approaches are inadequate for transformations
involving loop peeling and unrolling.

[Dahiya and Bansal 2017a] used a brute-force approach to attempt to correlate program paths in
𝐶 and 𝐴, wherein the product-CFG is constructed incrementally and invariants are inferred on the
partially-constructed product-CFG at each step. A new edge (representing a correlation of paths in
𝐶 and 𝐴) is added to the incrementally-constructed product-CFG only if the path conditions (the
weakest conditions under which the paths are taken) are provably identical (based on the invariants
inferred so far). While this approach can theoretically handle a much larger set of transformations,
it has significant practical limitations. First, the number of paths that need to be correlated can
be exponential in the size of the program and in the unroll factor. The experiments reported in
their work discounted the possibility of loop unrolling (causing false equivalence failures); even

1The name Counter is intended to represent two facts about the algorithm: (1) it uses counterexamples to identify the most

promising correlation, and (2) it counts the number of related variables across the two programs to rank the potential

correlations in the order of their promise.
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after this simplification, they reported equivalence failures due to timeouts for a large number of
equivalence checks. Second, they required the correlated paths to have identical path conditions,
which we find is too restrictive as it cannot accommodate all transformations that involve code
specialization, e.g., loop unswitching.

[Churchill et al. 2019] addressed these shortcomings in [Dahiya and Bansal 2017a]’s work through
a data-driven approach. They first łguessž an alignment predicate (AP) that must hold at all nodes of
the required product-CFG. Then, using concrete execution traces (on identical inputs) on 𝐶 and 𝐴,
they construct a candidate product-CFG (which they call the Program Alignment Automaton or PAA)
Ð the execution traces are employed to determine potentially correlated transitions by identifying a
correspondence between PCs such that the machine states satisfy the guessed AP at those correlated
PCs. By construction, the language accepted by the PAA includes the concrete execution traces (for
all available inputs) on 𝐶 and 𝐴. In other words, the PAA represents the product-CFG as guessed
through the available concrete execution traces. The primary idea is to extrapolate the behavior
of the two programs on a small set of concrete traces by using a łgood" AP guess, to all possible
executions on 𝐶 and 𝐴. This approach is best-effort because: (a) it requires execution traces with
adequate path coverage on both 𝐶 and 𝐴; we find that adequate coverage may require traces that
exhibit an exponential number of distinct behaviors. (b) It relies on a good AP guess: an AP that is
too strong would ignore the desired PAA while an AP that is too weak would result in too many
satisfying PAAs, of which most would be incapable of yielding a provable bisimulation. In their
paper, the authors synthesize potential APs through a syntactic grammar, and for each potential
AP, they pick the first satisfying PAA to see if it can yield a provable bisimulation. This approach
was evaluated on mostly single-loop source programs with no control flow within the loop bodies
of the source program. In their paper [Churchill et al. 2019], the authors acknowledge that they
leave the problem of synthesizing the required AP for programs with multiple loops for future
work.

Our approach to identifying the product-CFG neither requires high-coverage execution traces,
nor relies on the availability of an alignment predicate. Instead we are able to use a combination
of a brute-force search (a la [Dahiya and Bansal 2017a]) and a counterexample-guided best-first
strategy (somewhat inspired from [Churchill et al. 2019]) to guide this search. Our experiments
demonstrate that Counter can compute equivalence across vectorizing transformations in the
presence of register reallocation across different loops, and even in the presence of multiple loops
and complex control-flow in both programs.

2 MOTIVATING EXAMPLES

We motivate our algorithm by using examples to critique [Churchill et al. 2019]’s semantic program

alignment (SPA) algorithm, which we think is the closest competing algorithm in terms of its
capabilities. To understand SPA through an example: if for a given input, program 𝐶 takes path 𝜂𝐶
and program 𝐴 takes path 𝜂𝐴 such that the AP is satisfied by the machine states of 𝐶 and 𝐴 at the
endpoints of 𝜂𝐶 and 𝜂𝐴 respectively, then a PAA transition (product-CFG edge) that correlates the
two paths, 𝜂𝐶 and 𝜂𝐴, is added to the PAA. In other words, an edge 𝑒 = (𝜂𝐶 , 𝜂𝐴) is added to the
PAA only if the states at the two (start and stop) endpoints are related by AP and the programs 𝐶
and 𝐴 are known to take these paths 𝜂𝐶 and 𝜂𝐴 respectively for the same input (for all available
concrete inputs). By construction, the start nodes ((C0,A0) in fig. 1) and exit nodes (EC, EA) of
the two programs are always correlated in the PAA. Inductive invariants are then inferred on the
PAA (which is identical to a product-CFG) and the equivalence proof is completed if the inferred
invariants guarantee observable equivalence.

Our first criticism of this approach is that a path is correlated in the PAA only if it is seen to be
taken in one of the concrete execution traces. In general, the number of paths can be exponential
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int LEN , a[LEN], b[LEN];

int c[LEN], d[LEN];

C0: void s441() {

C1: for (int i = 0; i < LEN; i++) {

C2: if (d[i] < 0) {

C3: a[i] += b[i] * c[i];

C4: } else if (d[i] == 0) {

C5: a[i] += b[i] * b[i];

C6: } else {

C7: a[i] += c[i] * c[i];

C8: }

C9: }

C10:}

(a) C program.

LEN is a positive multiple of 4.

A0: s441:

A1: r1 = 0

A2: xmm1 = a[r1 .. r1+3]

A3: xmm2 = xmm1 + b[r1 .. r1+3]*c[r1 .. r1+3]

A4: xmm3 = xmm1 + b[r1 .. r1+3]*b[r1 .. r1+3]

A5: xmm4 = xmm1 + c[r1 .. r1+3]*c[r1 .. r1+3]

// pcmpgtd

A6: xmm0 = (d[r1] < 0), .. , (d[r1+3] < 0)

A7: xmm1 = xmm0 ? xmm2 : xmm1 // pblendvb

// pcmpeqd

A8: xmm0 = (d[r1] == 0), .. , (d[r1+3] == 0)

A9: xmm1 = xmm0 ? xmm3 : xmm1 // pblendvb

// pcmpgtd

A10: xmm0 = (d[r1] > 0), .. , (d[r1+3] > 0)

A11: xmm1 = xmm0 ? xmm4 : xmm1 // pblendvb

A12: a[r1 .. r1+3] = xmm1

A13: r1 += 4

A14: if (r1 != LEN) goto A2

A15: ret

(b) (Abstracted) Assembly as generated by GCC

C0,A0 C1,A2 EC,EA
A0-A1-A2

C0-C1

A2-EA

((C1-C3-C1)+(C1-C5-C1)+(C1-C7-C1))4-EC

A2-A2

((C1-C3-C1)+(C1-C5-C1)+(C1-C7-C1))4

(c) Product-CFG

Fig. 2. Example program taken from TSVC suite

in the size of the program and in the unroll factor, and thus this approach may require traces with
an exponential number of distinct behaviors to arrive at the required product-CFG (or PAA).
Consider the example program from TSVC suite listed in fig. 2. The loop body in fig. 2a is

unrolled four times and vectorized in the assembly code in fig. 2b. The product-CFG required
for this pair of programs is shown in fig. 2c, where we use a series-parallel digraph to represent
a set of paths, where the + operator indicates parallel composition, and the serial composition
is denoted by simply concatenating the edges consecutively in a string. 𝜖 represents the empty
path and a numeric superscript 𝑃𝑛 is used to indicate 𝑃 serially composed with itself 𝑛 times. For
example, (C1-(C2-C3)2-(𝜖+C3)) represents a set of two paths, namely (C1-C2-C3-C2-C3) and
(C1-C2-C3-C2-C3-C3).

For ease of exposition, we show an assembly program with four unrolling in fig. 2 even though
the actual unrolling that can be performed by a compiler can be eight or even higher. Thus, a single
edge in the assembly program (A2-A2) (edge from A2 to A14 and back to A2) needs to be correlated
with all the possible 34 = 81 (or 38 = 6561 in case of 8 unrolling) paths in the unrolled loop
body of 𝐶 . Thus, for an unrolling of eight, SPA requires traces with at least 6561 distinct behaviors
(where each behavior corresponds to the traversal of a different path in𝐶) to be able to propose the
required PAA. On the other hand, Counter statically identifies this product-CFG without requiring
access to even a single execution trace. We find that none of the 28 benchmarks used to evaluate
SPA [Churchill et al. 2019] involved control flow inside the loop bodies of the source program, and
so this exponential-path problem could not get exposed during SPA’s evaluation.
Our second criticism of the SPA approach is that it depends heavily on the availability of

the required AP (alignment predicate). An AP that is too strong would prune out the required
PAA, while a weak AP may result in too many spurious potential PAAs and the algorithm would
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int in1[LEN][LEN], in2[LEN];

int out1[LEN], out2[LEN];

C0: void kernel_mvt () {

C1: int i, j;

C2: for (i = 0; i < LEN; i++) {

C3: int sum1 = out1[i];

C4: int sum2 = out2[i];

C5: for (j = 0; j < LEN; j++)

C6: sum1 += in1[i][j] * in2[j];

C7: for (j = 0; j < LEN; j++)

C8: sum2 += in1[j][i] * in2[j];

C9: out1[i] = sum1;

C10: out2[i] = sum2;

C11: }

C12: }

(a) C program.

LEN is a positive multiple of 4.

A0: kernet_mvt:

A1: r1 = 0

A2: r2 = 0, r3 = out1[r1], r4 = out2[r1], xmm0 = 0

A3: xmm0 += in1[r1][r2..r2+3] * in2[r2..r2+3]

A4: r2 += 4

A5: if (r2 != LEN) goto A3

A6: xmm0 += (xmm0 >> 8) // shift right by 8 bytes

A7: xmm0 += (xmm0 >> 4) // shift right by 4 bytes

A8: r3 += xmm0 [31:0]

A9: r5 = 0

A10: r4 += in1[r5][r1] * in2[r5]

A11: r5++

A12: if (r5 != LEN) goto A10

A13: out1[r1] = r3, out2[r1] = r4

A14: r1++

A15: if (r1 != LEN) goto A2

A16: ret

(b) (Abstracted) Assembly as generated by GCC.

C0,A0 C2,A2 C5,A3 C7,A10 EC,EA
A0-A2

C0-C2

A2-A3

C2-C5

A3-A3

(C5-C5)4

A3-A10

(C5-C5)4-C7

A10-A10

(C7-C7)

A10-EA

C7-C7-C10-EC

A10-A2

C7-C7-C9-C2

(c) Product-CFG

Fig. 3. A C program (left) and an equivalent abstracted assembly program (right).

be forced to arbitrarily pick one (or some) of the potential spurious PAAs. To see this with an
example, consider the pair of programs in fig. 3 taken from the Polybench suite [pol 2019]. The C
program contains three loops with two-level maximum nesting depth. The GCC assembly for this
program also has three loops where the first inner loop has been unrolled four times. An ideal
AP should precisely identify the correlated PCs; in this example, the ideal AP is different for each
loop. For example, the ideal AP for the outer loop may need to relate variables i and r1 while
the two inner loops may need to relate variables j and r2, and j and r5 in their respective APs.
However, the SPA algorithm accepts a single AP, which in this case may need to be something like:
(i = r1) ∧ ((j = r2) ∨ (j = r5)).

We must discuss how SPA behaves if we choose a less-than-ideal AP in more detail. In fig. 3, if
the AP is too strong, such as (i = r1) ∧ (j = r2), we will miss the required correlation, e.g., we
will never be able to correlate any intermediate PCs in the second inner loop. On the other hand,
if the AP is too weak, such as HC = HA, then we would get a lot of spurious correlations, e.g., a
single iteration of the C program’s loop would get correlated with a single iteration of the assembly
program’s loop which would be incorrect.
Based on the discussion in this section, we believe that while the SPA algorithm provides

interesting insights into data-driven correlations for equivalence checking, we identify the following
improvement opportunities.

(1) An algorithm that needs to identify correlations for each program path individually is not
scalable because the number of potential program paths is exponential in program size and
unroll factor. To tackle this problem, our algorithm identifies correlations for a set of program
paths, or pathset, in a single step. Counter attempts to correlate a pathset in 𝐶 with a pathset in
𝐴, where a single pathset may potentially represent a large number of program paths.
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(2) In the presence of multiple loops, the correlation must be developed incrementally: each loop
may have its own alignment properties and using a single alignment predicate (AP) for the
whole program is unlikely to succeed in general.

Our algorithm uses the following ideas to address these limitations:

(1) We use a series-parallel digraph representation for pathsets to correlate them efficiently across
𝐶 and 𝐴 in a single step. This representation enables linear-sized SMT proof obligations while
determining correlations across pathsets, even when a single pathset may contain an exponential
number of individual paths. The discharge of linear-sized SMT proof obligations, that are
generated due to the control-flow transformations performed by a typical compiler, is typically
fast, even though it remains worst-case exponential-time.
In contrast to this approach, an algorithm that attempts to correlate each individual path
separately (for an exponential number of paths) would require an exponential amount of time,
even for computing equivalence across trivial transformations.

(2) The Counter algorithm incrementally constructs the product-CFG through counterexample-
guided pruning and ranking subprocedures, and does not require an alignment predicate.

3 ALGORITHM

3.1 Equivalence Definition

A translation validator is generally supposed to check that if the source program𝐶 is safe (e.g., does
not exhibit undefined behavior or UB), then the observable behaviors produced by the compiled
program 𝐴 refine the observable behaviors produced by 𝐶 . In our setting, the source program 𝐶 is
unoptimized LLVM IR translated from C source code, and the compiled program is x86 assembly. To
tackle UB in𝐶 , we introduce a special łerrorž state in𝐶 which is reached whenever UB gets triggered.
In this setting, the equivalence problem can be overapproximately reduced to the checking of weak
trace equivalence:𝐶 and 𝐴 are equivalent, if for all inputs (a) either both programs produce identical
(potentially infinite) sequence of observable events; (b) or 𝐶 exhibits UB on that input. This is
overapproximate because we do not assume the absence of non-terminating behaviors in 𝐶 (which
is often UB).
Observable events include return values of the program (e.g., exit code of the main procedure)

and the heap states (which includes the regions belonging to the global variables) at exit. Observable
events also include any intermediate calls to undefined procedures, i.e., a C language procedure (aka
function) whose definition is not available in the same compilation context as its caller (e.g., printf),
because the compiler and the validator must conservatively assume that such callee procedures
can potentially result in I/O events (e.g., through system calls). Because we disable interprocedural
optimizations, all callee procedures are undefined in our setting. For the C language, UB includes
runtime errors related to type and memory safety.

3.2 Partially-Constructed Product-CFG, Associated Invariants, and Counterexamples

The Counter algorithm starts with a partial product-CFG that has only a single start node (C0,A0)
and incrementally expands it till we obtain a complete product-CFG (where all possible program paths
are correlated). For every partial product-CFG, we also compute the inductive invariants (through
our invariant inference algorithm) at each of its node. In addition to the inductive invariants, we
also maintain a set of concrete machine states (data) that may be observed at each product-CFG
node. A concrete machine state in the product-CFG is formed by combining the individual abstract
machine states of 𝐶 and 𝐴, and assigning concrete values to its state elements. We do not rely on
actual execution traces, but generate these concrete machine states through SMT queries (such
as those that are made during invariant inference). For example, the potential machine states at
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(C0,A0)

1

(C0,A0) (C2,A2)
A0-A2

C0-C2

2
. . .

(C0,A0) (C2,A2) (C5,A3)
A0-A2

C0-C2

A2-A3

C2-C5

3

. . .

(C0,A0) (C7,A2)
A0-A2

C0-C2-C5-C7

. . .

. . .

. . .

(C0,A0) (C5,A2)
A0-A2

C0-C2-C5

. . .

. . .

. . .

Fig. 4. Backtracking search tree

Table 1. Dataflow formulation for Inference of Inductive Invariants.

Domain

{

(INV𝑛,Γ𝑛) INV𝑛 is a conjunction of predicates drawn from
}

grammar in 5b, Γ𝑛 is a set of counterexamples

Direction Forward

Transfer function 𝑓𝜔 as specified in fig. 5a

Meet operator ⊗

(INV𝑛,Γ𝑛)← (INV1𝑛,Γ
1
𝑛) ⊗ (INV2𝑛,Γ

2
𝑛)

Γ𝑛 ← Γ1
𝑛 ∪ Γ

2
𝑛 , INV𝑛 ← StrongestInvCover(Γ𝑛)

Boundary condition out[𝑛𝑠𝑡𝑎𝑟𝑡] = (Pre,{}) (Pre = precondition at start node)

Initialization to ⊤ in[𝑛] = (False,{}) for all non-start nodes

the start node (C0,A0) may be identified through SMT queries that assert the invariants at that
node (e.g., equivalence of input values and heap states). Because these concrete states are created
from the models generated through SMT queries, we also refer to them as counterexamples. By
construction, a counterexample at a product-CFG node must satisfy the inductive invariants at that
node. In the context of a product-CFG, a node corresponds to a PCpair and these terms are used
interchangeably in the rest of the paper.
Notice that a counterexample need not necessarily be an actually occurring concrete machine

state for real inputs. As long as it satisfies the inferred inductive invariant at the respective node, it
suffices for our purposes.

3.3 Backtracking Search Tree

At every step of the algorithm, we pick a partially-constructed product-CFG and add another edge
(and potentially a node) to it (to expand it). This is repeated until a complete product-CFG is obtained
(at which point we check if the inductive invariants ensure observable equivalence). However, at
every step, there are several choices on which partial product-CFG to pick, and also which edge
to add in that product-CFG. A snapshot of the search tree for the pair of programs in fig. 3 is
depicted in fig. 4. Each node in the search tree represents a partially-constructed product-CFG,
and the outgoing edges at a node represent the potential possibilities for the newly added edge.
Even if the number of possibilities at each step is finite, the full search space remains exponentially
large. To lend robustness to this procedure, we use a backtracking-based exhaustive search in this
exponentially-large space. We show that a counterexample-based pruning and ranking strategy
can efficiently search this space to identify a provable bisimulation relation for several types of
aggressive vectorization transformations.
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Function 𝑓𝜔 (INV𝑛,Γ𝑛)
Γ𝑐𝑎𝑛

𝑛𝑑
← [ Γ

𝑛𝑑
∪ 𝑝𝜔 (Γ𝑛);

INV𝑐𝑎𝑛
𝑛𝑑
←[ StrongestInvCover(Γ𝑐𝑎𝑛

𝑛𝑑
);

while SAT(INV𝑛 ∧ ¬WP𝜔 (INV𝑐𝑎𝑛
𝑛𝑑

), 𝛾𝑛) do

𝛾
𝑛𝑑
←[ 𝑝𝜔 (𝛾𝑛);

Γ𝑐𝑎𝑛

𝑛𝑑
←[ Γ𝑐𝑎𝑛

𝑛𝑑
∪ {𝛾

𝑛𝑑
};

INV𝑐𝑎𝑛
𝑛𝑑
← [ StrongestInvCover(Γ𝑐𝑎𝑛

𝑛𝑑
);

end

return (INV𝑐𝑎𝑛
𝑛𝑑

,Γ𝑐𝑎𝑛

𝑛𝑑
);

(a) Transfer function 𝑓𝜔 for invariant inference.

𝐼𝑛𝑣 →
∑

𝑖 𝑐𝑖𝑣𝑖 = 𝑐 HC =∆ HA ±𝑣 ≤ 2𝑐

𝑟1 ≤ 𝑟2 𝑟1 < 𝑟2

(b) Predicate grammar for constructing invariants. 𝑣

represents a bitvector program variable (including

registers and stack slots) and 𝑐 represents a

bitvector constant. HC =∆ HA equates the heap

states of programs 𝐶 and 𝐴 except addresses in ∆. 𝑟

represents a register in 𝐴.

Fig. 5. Transfer function and Predicate grammar for Invariant Inference DFA in table 1. StrongestInvCover()

computes the strongest invariant cover for a set of counterexamples. 𝑝𝜔 represents the concrete execution

function for edge 𝜔 . 𝛾𝑛 is the counterexample returned by the SMT solver for a SAT() query.

3.4 Invariant Inference and Counterexample Generation

At every step of the algorithm, we add an edge to a partial product-CFG to obtain a new partial
product-CFG. For each new partial product-CFG thus obtained, we infer inductive invariants at
every product-CFG node. Our invariant inference procedure is a forward Data-Flow Analysis (DFA)
as described in table 1. The values computed through the DFA are represented by a tuple (INV𝑛,Γ𝑛)
where INV𝑛 denotes an invariant at node 𝑛 and Γ𝑛 denotes a set of counterexamples at node 𝑛. For
an edge 𝜔 = 𝑛 → 𝑛𝑑 from node 𝑛 to node 𝑛𝑑 , the transfer function involves:

(1) Identifying the strongest invariant INV𝑛𝑑 that is weaker than the strongest-postcondition of the
invariant at 𝑛, INV𝑛 across edge 𝜔 , and

(2) Adding counterexamples to Γ𝑛𝑑 based on the proof obligations generated during invariant
inference.

The DFA’s meet operator involves computing the union of the counterexample sets Γ𝑛 and then
updating the strongest invariant cover, INV𝑛 , accordingly. The boundary condition initializes the
invariants at the start node (C0,A0) or 𝑛𝑠𝑡𝑎𝑟𝑡 to the precondition that asserts the equality of
heap states and input arguments while considering ABI and calling conventions; similarly the
boundary condition initializes the counterexample set at the start node𝑛𝑠𝑡𝑎𝑟𝑡 to the empty set. (As an
optimization, it is also possible to seed Γ𝑛𝑠𝑡𝑎𝑟𝑡 at the start node with a small set of counterexamples).

An invariant INV𝑛 is formed by conjuncting atomic predicates drawn from the grammar shown
in fig. 5b. The atomic predicates relate the variables across programs 𝐶 and 𝐴. Notice that for the
assembly program 𝐴, we consider the registers and stack slots as its łvariablesž; also for vector
registers like xmm, we also consider 32-bit subwords of such registers as separate variables.
The evaluation of the transfer function 𝑓𝜔 of an edge 𝜔 = 𝑛 → 𝑛𝑑 on an invariant INV𝑛 (and

counterexample set Γ𝑛) at node 𝑛 involves a fixed-point procedure as shown in fig. 5a. To compute
(INV𝑛𝑑 ,Γ𝑛𝑑 ) = 𝑓𝜔(INV𝑛,Γ𝑛), we start by propagating the input counterexample set Γ𝑛 over the
edge 𝜔 using its concrete execution function 𝑝𝜔 to add output counterexamples to the existing
set Γ𝑛𝑑 and obtain a new candidate set Γ𝑐𝑎𝑛

𝑛𝑑
. INV𝑐𝑎𝑛

𝑛𝑑
denotes the candidate output invariant at 𝑛𝑑

and is computed as the strongest invariant cover of Γ𝑐𝑎𝑛
𝑛𝑑

. The strongest invariant cover of Γ𝑐𝑎𝑛
𝑛𝑑

is the strongest possible invariant, that can be generated by conjuncting predicates drawn from
our grammar (fig. 5b), and that is satisfied by all counterexamples in set Γ𝑐𝑎𝑛

𝑛𝑑
e.g., the strongest

invariant cover for an empty set is false. At each step, we generate a proof obligation which can
be represented through a relational Hoare triple [Benton 2004; Hoare 1969] as {INV𝑛}𝜔{INV

𝑐𝑎𝑛
𝑛𝑑
}.
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This Hoare triple states that if the machine starts at node 𝑛 such that it satisfies {INV𝑛}, and
the edge 𝜔 is executed, then the resulting machine state would satisfy {INV𝑐𝑎𝑛

𝑛𝑑
}. To discharge

proof obligations, the Hoare triple is lowered to a propositional boolean logic formula of the form
INV𝑛 ⇒WP𝜔(INV

𝑐𝑎𝑛
𝑛𝑑

) where WP𝜔(INV
𝑐𝑎𝑛
𝑛𝑑

) computes the weakest precondition of INV𝑛𝑑 across

𝜔 . The proof obligation is discharged through an off-the-shelf SMT solver with quantifier-free
bitvector, array and uninterpreted function theories. If the proof succeeds, INV𝑐𝑎𝑛

𝑛𝑑
holds the required

invariant (INV𝑛𝑑 ) and Γ𝑐𝑎𝑛
𝑛𝑑

holds the output set of counterexamples at 𝑛𝑑 (Γ𝑛𝑑 ) both of which are

returned. Otherwise we obtain a counterexample (model) that we add to Γ𝑐𝑎𝑛
𝑛𝑑

, and also recompute

INV𝑐𝑎𝑛
𝑛𝑑

as the strongest invariant cover of the new Γ𝑐𝑎𝑛
𝑛𝑑

. This computation is guaranteed to converge,

as the newly generated counterexample in Γ𝑐𝑎𝑛
𝑛𝑑

would strictly weaken INV𝑐𝑎𝑛
𝑛𝑑

at each step, and

thus we are guaranteed to eventually converge in a finite number of steps (because the semi-lattice
formed by the candidate invariants has finite height).
For the affine invariant, the computation of the strongest invariant cover involves computing

the strongest affine cover [Müller-Olm and Seidl 2005]. For all other invariants in our grammar,
we use a Houdini-like approach [Flanagan and Leino 2001] where a conjunction of all atomic
predicates (from the grammar) is used and predicates that are not satisfied by the current set of
counterexamples are eliminated to weaken the candidate invariant.

The DFA construction ensures that we obtain the Maximum Fixed Point (MFP) solution for the
inductive invariants at each node. A very useful by-product of this procedure is that we also obtain
counterexamples at each product-CFG node.

3.5 Counterexample Propagation

In addition to helping our invariant inference procedure, counterexamples in the partial product-
CFG also help in identifying the most promising future correlations, as we discuss later. For both
these reasons, more counterexamples at each node are desirable. Thus, we propagate every generated
counterexample in the product-CFG in the forward direction to populate the Γ sets at downstream
nodes. The propagation of a counterexample is quite similar to interpreted execution of the product-
CFG on a concrete machine state, with two operational differences. First, counterexamples need
not have concrete valuations for all live program variables Ð they just contain valuations for those
variables that were a part of the SMT query that generated it. Thus, during propagation, if the
program reads a variable that is not already present in the counterexample, a random value is
generated for that variable and added to the counterexample. Second, the potential presence of
UB in the 𝐶 program may interfere with counterexample propagation. During propagation, if a
counterexample triggers UB, we do not propagate the counterexample any further Ð in other
words, the counterexample transitions to the special łerrorž state meant to catch UB. Thus, a
counterexample differs from inputs derived from real program traces: while real traces must never
trigger UB, a counterexample generated through an SMT query has no such requirement.
Even though counterexamples cannot replace real execution traces, a counterexample is still

useful because it satisfies the inferred invariant at the node at which it was generated, and it does
not trigger UB on the paths on which it is propagated. Thus it is safe to consider a counterexample
at par with a real concrete machine state for these smaller program segments where it does not
trigger UB, because our reasoning power in these smaller segments is constrained by the inferred
invariants in any case.

To ensure termination, we bound the maximum number of times a counterexample propagation
may encounter a node Ð we call this the propagation bound which is set to 3 in our equivalence
checking tool. If the counterexample visits a node more than thrice during propagation, we do not
propagate it any further. Using a propagation bound of 3 is meaningful because it is small enough
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to result in efficient propagations, and yet it is usually able to produce new useful counterexamples
from an existing counterexample (e.g., over a loop edge) without requiring more SMT queries. Each
time a new counterexample gets generated (through an SMT query), counterexample propagation is
attempted on it. Additionally, whenever a new edge𝜔 = 𝑛 → 𝑛𝑑 is added to the partial product-CFG,
the counterexamples at 𝑛 are propagated to 𝑛𝑑 and further, subject to propagation bound.

Whenever a counterexample set is updated, we recompute its strongest invariant cover. Notice
that the invariant cover for a counterexample set need not be inductively provable, but serves as
a lower bound on the inductive invariant (which would be computed later). As we will see later
(section 3.9), the recomputed invariant cover is helpful in pruning and ranking the candidate partial
product-CFGs to implement a best-first exploration of the search space. It is important to note that
the computation of the strongest invariant cover is significantly cheaper than an SMT query; thus
pruning based on such computation (to save an SMT query) is meaningful.

3.6 Anchor Nodes in 𝐴 and 𝐶

To reduce the number of possibilities at each step of the search tree, we restrict the nodes (PCs) of
a program that may be correlated in the product-CFG, also called that program’s anchor nodes.
We restrict 𝐴’s anchor nodes to one of the following three possibilities:

(1) The start and exit nodes of 𝐴.
(2) Any node in 𝐴 that is incident (incoming or outgoing) to a CFG edge that involves a call to an

undefined function. An undefined function is a function whose definition is not available in the
current compilation (and validation) unit.

(3) Loop heads in 𝐴 for loop bodies that do not already contain an anchor node on one of the cyclic
paths2.

Calls to undefined functions may result in observable events such as I/O, and thus they can be
easily correlated by matching their potential observable events. Considering loop heads as anchor
nodes ensures that there is at least one PC in every cyclic path in 𝐴 that may get correlated in the
product-CFG.
Similarly, we restrict 𝐶’s anchor nodes too. Unlike 𝐴, the anchor nodes in 𝐶 include all basic

block heads and tails. Further, all nodes that are incident to an edge with a function call are included
in the set of anchor nodes for 𝐶 . Our choice of anchor nodes for 𝐴 and 𝐶 appeals to Observation-C
in section 1, so that we still expect the space of potential product-CFGs to contain the required
solution.

In fig. 3b, A0, A2, A3, A10, and EA form the set of anchor nodes for program 𝐴. Similarly, in fig. 3a,
C0, C1, C2, C3, C5, C6, C7, C8, C9, C11, and EC form the set of anchor nodes in 𝐶 .

3.7 (𝜇, 𝛿)-Unrolled Full Pathsets and Their Correlation Criterion

3.7.1 Pathset. A pathset 𝜉 is a set of execution paths with the following two requirements:

(1) All execution paths in 𝜉 start at the same node and end at the same node. For example, in
fig. 2a, the paths (C1-C3-C1) and (C1-C5-C1) may be a part of the same pathset; but paths
(C1-C3-C1) and (C1-C5-EC) may not be a part of the same pathset.

(2) All execution paths in a pathset should be pairwise mutually-exclusive, i.e., if one path is taken,
another path in the same pathset cannot be taken simultaneously. For example, in fig. 2a, the
paths (C1-C3-C1) and (C1-C5-C1-C3-C1) may be a part of the same pathset. However, the
paths (C1-C3-C1) and (C1-C3-C1-C5-C1) may not be a part of the same pathset because the
first path (C1-C3-C1) is a prefix of the second path (C1-C3-C1-C5-C1) indicating that if the
second path is taken, the first path is also taken simultaneously.

2We use depth-first search to identify the loop heads on cyclic paths; we do not assume reducible CFGs in our work
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A product-CFG edge correlates a pathset in𝐶 with a pathset in𝐴. For example, in fig. 2, the product-
CFG correlates a pathset in 𝐶 formed by 34 = 81 paths (represented as series-parallel digraph
((C1-C3-C1)+(C1-C5-C1)+(C1-C7-C1))4) with pathset (A2-A2) (single path) in program 𝐴.

3.7.2 (𝜇, 𝛿)-Unrolled Full Pathset. To tackle different possible unrollings, we introduce the notion
of a (𝜇, 𝛿)-unrolled full pathset. A (𝜇, 𝛿)-unrolled full pathset between two nodes 𝑠 and 𝑡 is the set
of all possible paths from 𝑠 to 𝑡 such that no node other than 𝑡 is repeated more than 𝜇 times on

any one path and 𝑡 is repeated exactly 𝛿 times on all paths. We denote this as FP
𝜇,𝛿
𝑠⇝𝑡 . We are only

interested in pathsets where 𝛿 ≤ 𝜇.

For example, in fig. 3a, FP2,2
C2⇝C7

contains paths (C2-C5-C7-C7), (C2-C5-C5-C7-C7) and
(C2-C5-C7-C2-C5-C7).

Further, we define FPsets
𝜇
𝑠⇝𝑡 = {FP

𝜇,𝛿
𝑠⇝𝑡 |1 ≤ 𝛿 ≤ 𝜇}. FPsets

𝜇
𝑠⇝𝑡 is a set of 𝜇 pathsets, where

each element is the pathset FP
𝜇,𝑖
𝑠⇝𝑡 (for 1 ≤ 𝑖 ≤ 𝜇).

In fig. 3a, FPsets2C5⇝C7 is a set of two elements: {FP2,1C5⇝C7, FP
2,2
C5⇝C7}. Here, FP

2,1
C5⇝C7 con-

tains (C5-C7), (C5-C5-C7), and (C5-C5-C5-C7). Similarly, FP
2,2
C5⇝C7

contains (C5-C7-C7),
(C5-C5-C7-C7), (C5-C5-C5-C7-C7), (C5-C7-C2-C5-C7), (C5-C5-C7-C2-C5-C7), and (C5-C7-

-C2-C5-C5-C7). Note that FP2,1C5⇝C7 and FP
2,2
C5⇝C7 are disjoint (they do not have a common path). In

general, two full pathsets with different values of 𝛿 are disjoint by definition. Further, all paths

within a single pathset (say FP
2,2
C5⇝C7) are pairwise mutually-exclusive by construction.

3.7.3 Criterion for Correlating Pathsets. By definition, if an edge 𝜔 = (𝜉𝐶 , 𝜉𝐴) is traversed in the
product-CFG, it implies that one of the paths in 𝜉𝐶 is traversed in program𝐶 and one of the paths in
𝜉𝐴 is traversed in program𝐴. While this property defines the general space of potential correlations,
we restrict this space further through a correlation criterion to achieve better tractability. We restrict
correlations by requiring that 𝜉𝐶 can be correlated with 𝜉𝐴 through a product-CFG edge𝜔 = (𝜉𝐶 , 𝜉𝐴)
only if the following property holds: if any of the paths in 𝜉𝐴 is traversed in program𝐴, then one of the

paths in 𝜉𝐶 in program𝐶 must be traversed. For example, our algorithm does not allow 𝜉𝐴 =(A2-A2)

to be correlated with 𝜉𝐶 =(C1-C3-C1)4 for the pair of programs in fig. 2 because if 𝜉𝐴 is traversed
in 𝐴, then paths outside 𝜉𝐶 may be traversed in 𝐶 (e.g., (C1-C5-C1)4).

This restriction that mandates that 𝜉𝐴 must represent a specialization of 𝜉𝐶 is a direct reflection of
Observation-D introduced in section 1. We argue, through empirical evaluation, that this restriction
significantly reduces the product-CFG search space without hurting robustness.

To compare this restriction with previous work, the SPA algorithm [Churchill et al. 2019] has no
such requirement: given the required AP (alignment predicate), it could potentially correlate any 𝐶
path with any 𝐴 path in theory. However, for the APs and the transformations considered in their
paper, there is no program-pair and associated PAA (or product-CFG) that violates this requirement.
This is unsurprising because 27 out of 28 programs evaluated in their work have a single loop in
the program and none of them have control flow within the loop body. This restriction allows us to
scale to larger programs, while still retaining robustness to a very high degree.

3.8 Enumerating Candidate Correlations

For a given product-CFG and for a node 𝑛 = (𝑛𝐶 , 𝑛𝐴) in that product-CFG, we are interested in

identifying the outgoing product-CFG edges 𝜔 = 𝑛 → 𝑛𝑑 = (𝜉𝐶 , 𝜉𝐴). We first enumerate the
possibilities for 𝜉𝐴, and for each 𝜉𝐴, we enumerate possibilities for 𝜉𝐶 .

3.8.1 Enumerating Outgoing Pathsets 𝜉𝐴 in 𝐴. To enumerate outgoing pathsets 𝜉𝐴 starting at 𝑛𝐴
in 𝐴, we restrict our attention to only those pathsets that end at one of the nexthop anchor nodes
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of 𝑛𝐴. A nexthop anchor node of 𝑛𝐴 is an anchor node which can be reached from 𝑛𝐴 through a
program path in 𝐴 without having to go through any other anchor node in 𝐴.
To enumerate outgoing pathsets 𝜉𝐴 at 𝑛𝐴, we use a two-step procedure. First, for each nexthop

anchor node ℎ𝐴 of 𝑛𝐴, we compute FPsets1
𝑛𝐴⇝ℎ𝐴

(i.e., unroll factor = 1, indicating no unrolling).

Notice that for a fixed ℎ𝐴, FPsets
1
𝑛𝐴⇝ℎ𝐴

will be a singleton set whose only element represents the

full pathset FP1,1
𝑛𝐴⇝ℎ𝐴

. In our second step, we remove those paths from FP1,1
𝑛𝐴⇝ℎ𝐴

that contain edges

incident to any other anchor node in 𝐴 (except ℎ𝐴). The resulting pathset 𝜉𝐴 is our correlation

candidate. For example, in fig. 3b, FP1,1
A3⇝A3

can be represented as ((A3-A3)+(A3-A10-A2-A3)).
After the second step, 𝜉𝐴 reduces to only (A3-A3) (the other path incident to A10 and A3 is removed).

By construction all these candidate outgoing pathsets in 𝐴, 𝜉𝐴, are mutually exclusive. In the
complete product-CFG, we thus need to correlate all such 𝜉𝐴 pathsets. Our algorithm proceeds by
correlating one such 𝜉𝐴 at each step. To reduce backtracking, we pick these nexthop nodes ℎ𝐴 (and
associated candidate pathsets) in Reverse Post-Order (RPO). In fig. 3c, starting at product-CFG node
(C5,A3), the nexthop anchor nodes in program 𝐴 (in reverse post-order) are A3 and A10.

3.8.2 Enumerating Outgoing Pathsets 𝜉𝐶 in𝐶 . To enumerate pathsets in𝐶 starting at𝑛𝐶 , we consider
all anchor nodes𝑤𝐶 , and compute the full pathsets FPsets

𝜇𝐶
𝑛𝐶⇝𝑤𝐶

and add all such pathsets to an

accumulator 𝜅𝑛𝐶 , i.e., 𝜅𝑛𝐶 = {𝜖} ∪ (
⋃

𝑤𝐶
FPsets

𝜇𝐶
𝑛𝐶⇝𝑤𝐶

) (𝜖 represents the empty path). Each non-𝜖
element in 𝜅𝑛𝐶 represents a full pathset (at an unroll factor 𝜇𝐶 ) to some node𝑤𝐶 in 𝐶 . Notice that
unlike the pathsets enumerated for 𝐴, here we do not restrict𝑤𝐶 to be the nexthop of 𝑛𝐶 .

Consider the example in fig. 3a and assume we are enumerating pathsets in𝐶 starting at node C5
for 𝜇𝐶 = 2. Based on the procedure described in this section, we would consider all possibilities for
𝑤𝐶 , which are C2, C3, C5, C6, C7, C8, C9, C11, and EC (basically all anchor nodes in 𝐶 except those
that are not reachable from C5). For each possible𝑤𝐶 , we compute FPsets

𝜇𝐶
𝑛𝐶⇝𝑤𝐶

as described in
section 3.7.2. The elements of this enumerated 𝜅𝑛𝐶 represents the candidates for 𝜉𝐶 .

3.9 Counterexample-Guided Pruning and Ranking

At every PCpair in a partial product-CFG, for every enumerated outgoing pathset in 𝐴, we need to
enumerate pathsets in 𝐶 as candidate correlations. To keep our backtracking search tractable, it is
crucial to carefully prioritize more promising correlations over others. This prioritization allows
us to realize a best-first search. At a high level, we first enumerate all possibilities for pathsets
in 𝐶 (in an arbitrary order) and then prune out certain possibilities because the current set of
counterexamples decisively indicate that those possibilities cannot yield a provable bisimulation
(sections 3.9.1 and 3.9.2). Next, we use counterexamples to rank the remaining possibilities from
most promising to least promising (sections 3.9.3 to 3.9.5).
For the following discussion in this section, we consider a PCpair 𝑛 = (𝑛𝐶 , 𝑛𝐴) in the product-

CFG and consider a newly-created correlation between pathset 𝜉𝐶 (starting at node 𝑛𝐶 in 𝐶) and
𝜉𝐴 (starting at node 𝑛𝐴 in 𝐴). The counterexample set at node 𝑛 is Γ𝑛 . To represent the candidate
correlation, an outgoing product-CFG edge 𝜔 = 𝑛 → 𝑛𝑑 = (𝜉𝐶 , 𝜉𝐴) is added to the product-CFG.

Further, counterexamples in Γ𝑛 are propagated across 𝜔 = 𝑛 → 𝑛𝑑 to add counterexamples at
node 𝑛𝑑 , and potentially 𝑛𝑑 ’s successors, subject to the propagation bound. During counterexample
propagation, as the counterexample sets are updated, the strongest invariant covers at 𝑛𝑑 (and other
downstream nodes) are recomputed. In our following discussion on the ranking procedure, we
assume that we are comparing two partial product-CFGs 𝜋1 and 𝜋2 which are otherwise identical,
but differ in the most-recently added 𝜔 edge. We later generalize this discussion to comparison
between arbitrary partial product-CFGs.
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3.9.1 Pruning Based on Paths Taken by Counterexamples. If there exists a counterexample 𝛾 ∈ Γ𝑛

such that, when propagated on the outgoing paths, 𝛾 takes a path in 𝜉𝐴 but does not take any
of the paths in 𝜉𝐶 , then that candidate correlation is discarded. This pruning strategy appeals to
our correlation criterion (section 3.7.3) which requires that if program 𝐴 takes a path in 𝜉𝐴, then
program 𝐶 must take one of the paths in 𝜉𝐶 . If an existing counterexample violates this criterion
for a candidate correlation, that candidate correlation is evidently incorrect.

3.9.2 Pruning Based on Heap Relations. If the heap states HC and HA are not related by the re-
computed invariant cover at 𝑛𝑑 (or any other downstream node), we eliminate that candidate
product-CFG. This is based on the premise that the heap states need to be correlated at program
exit, and if they are not correlated at an intermediate PCpair, then there is little hope for them to
be correlated at exit. Thus it is safe to eliminate all such partial product-CFGs.

3.9.3 Ranking on Number of Affine-Related Live Bitvector Variables in𝐴. To compare two candidate
correlations, represented as two candidate partial product-CFGs, 𝜋1 and 𝜋2, we count the number
of live bitvector variables in 𝐴 that are related through affine relations at 𝑛𝑑 . If the number of live
bitvector variables in program 𝐴 related through affine relations in INV𝑛𝑑 is more in 𝜋1 than in 𝜋2,
then 𝜋1 is ranked higher than 𝜋2, and vice-versa. Notice that 𝑛𝑑 may be different in 𝜋1 and 𝜋2.
This ranking strategy is based on the heuristic that an incorrect correlation would likely cause

some of the live bitvector variables in 𝐴 to not have any relation to the program values at the
correlated PC in 𝐶 .

3.9.4 Ranking on Number of Affine-Related Live Bitvector Variables in 𝐶 . If the first ranking step
results in a tie (i.e., the number of affine-related live bitvector variables in 𝐴 is identical in both
correlations), we compare the number of live bitvector variables in program 𝐶 that are related
through affine relations in INV𝑛𝑑 : if the number of live bitvector variables in𝐶 with affine relations
is more in 𝜋1, then 𝜋1 is ranked higher, and vice-versa.
This ranking strategy is also based on the heuristic that a correct correlation is likely to relate

more 𝐶 variables than an incorrect correlation.

3.9.5 Static Heuristic as Tie-Breaker. If both correlations behave identically on the two ranking
criteria listed above, we use the following static heuristic as a tie-breaker:

• Recall that all correlated pathsets in 𝐶 are (𝜇, 𝛿)-unrolled full pathsets. Also recall that for the
pathset 𝜉𝐶 between nodes 𝑛𝐶 and 𝑛𝑑

𝐶
, the node 𝑛𝑑

𝐶
is repeated exactly 𝛿 times on all paths

(indicating 𝛿 unrollings). We prioritize the correlation that correlates a pathset with a lower
value of 𝛿 . This heuristic is based on the observation that most program transformations do
not involve unrolling, and so it is more efficient on average to prioritize correlations at smaller
unroll factors.
• If the unroll factors of the two candidate correlated pathsets 𝜉𝐶 are identical, then we prioritize
the correlation that has 𝜉𝐶 with a longer pathset length. The pathset length is the length of
the shortest path in that pathset. This tie-breaker is meaningful because longer paths would
generally entail stronger path conditions and thus have a higher likelihood of failing our
correlation criterion (described in section 3.7.3) in case of an incorrect correlation. In other
words, this heuristic of prioritizing the longer path over shorter paths resembles a łfail fastž
strategy.

So far, we have described the ranking strategy in the context of a single correlation (of 𝜉𝐴 with
𝜉𝐶 ). However, a product-CFG is made up of multiple edges, each denoting a separate correlation.
For our best-first search algorithm, we need to compare one product-CFG with another even if
they may involve multiple different correlations. To allow such comparisons, we extend these
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Function computeRank(𝜋 )

r𝐴 ← 0 r𝐶 ← 0

foreach node 𝑛 = (𝑛𝐶 , 𝑛𝐴) ∈ nodes(𝜋 ) do
live𝐴 ← getLiveVariables(𝑛𝐴 , 𝐴) live𝐶 ← getLiveVariables(𝑛𝐶 ,𝐶)

r𝐴 ← r𝐴+ getVariablesWithNoAffineRelations(live𝐴 , INV𝑛 )

r𝐶 ← r𝐶+ getVariablesWithNoAffineRelations(live𝐶 , INV𝑛 )

end

return (𝑟𝐴, 𝑟𝐶 )

Function staticHeuristic(𝜋1, 𝜋2)

𝜉𝐶
1
← lastCorrelatedSrcPathset(𝜋1) 𝜉𝐶

2
← lastCorrelatedSrcPathset(𝜋2)

𝜇1 ← getUnrollFactorForPathset(𝜉𝐶
1
) 𝜇2 ← getUnrollFactorForPathset(𝜉𝐶

2
)

len1 ← getPathSetLength(𝜉𝐶
1
) len2 ← getPathSetLength(𝜉𝐶

2
)

return (𝜇1,−len1) ≤ (𝜇2,−len2)
Function comparePromiseForProductCFGs(𝜋1, 𝜋2)

(𝑟𝐴
1
, 𝑟𝐶

1
)← computeRank(𝜋1) (𝑟𝐴

2
, 𝑟𝐶

2
)← computeRank(𝜋2)

if (𝑟𝐴
1
, 𝑟𝐶

1
) ̸= (𝑟𝐴

2
, 𝑟𝐶

2
) then

return (𝑟𝐴
1
, 𝑟𝐶

1
) < (𝑟𝐴

2
, 𝑟𝐶

2
)

end

return staticHeuristic(𝜋1, 𝜋2)

Fig. 6. Comparison function used to rank product-CFGs during best-first search. The comparison operators

<, ≤ for tuples compare lexicographically starting with the first element.

ideas to the whole product-CFG by accumulating the number of live bitvector variables (in 𝐴

and 𝐶) that have not been correlated at every PCpair, and then comparing these accumulated
counts. This comparison function is shown in fig. 6; comparePromiseForProductCFGs() compares
two product-CFGs for their relative promise towards yielding a provable bisimulation; it returns
true iff 𝜋1 holds more promise than 𝜋2.

3.10 Pruning and Ranking Algorithms Through Examples

Consider the example program pair in fig. 3, and suppose we are considering the partial product-
graph 3 in fig. 4. The algorithm would next try to correlate the pathset (A3-A3) in 𝐴 starting at
PCpair (C5,A3), based on RPO.
For 𝜇𝐶 = 4, the enumerated pathsets for 𝐶 (𝜅𝑛𝐶 ) would include the 𝜖 path and full pathsets

starting from C5 and ending at one of the following nine reachable anchor nodes in𝐶 nodes: C2, C3,
C5, C6, C7, C8, C9, C11, and EC. In other words, we get 34 candidate pathsets, one for each element
in the set {{𝜖}

⋃

FPsets4𝐶5⇝𝐶2

⋃

FPsets4𝐶5⇝𝐶3

⋃

FPsets4𝐶5⇝𝐶5

⋃

FPsets4𝐶5⇝𝐶6 . . .}. To keep
our following discussion simpler, we restrict our attention to only those pathsets that end at loop
heads in 𝐶 (even though the algorithm considers all pathsets and still operates efficiently). The
loop heads in 𝐶 are C5, C7, and C2, and hence the candidate pathsets that we will consider for
(A3-A3) belong to {{𝜖}

⋃

FPsets4𝐶5⇝𝐶5

⋃

FPsets4𝐶5⇝𝐶7

⋃

FPsets4𝐶5⇝𝐶2}, for a total of 13 (out
of 34) possibilities.

3.10.1 Pruning Based on Paths Taken by Counterexamples. Recall that our path condition pruning
checks that starting at PCpair (C5,A3), if pathset 𝜉𝐴 is correlated with pathset 𝜉𝐶 , then a coun-
terexample at (C5,A3) that takes one of the paths in 𝜉𝐴 must also take one of the paths in 𝜉𝐶
(to satisfy our correlation criterion in section 3.7.3). Also we must have at least one (usually a
few) counterexamples at (C5,A3) that must have been added either during invariant inference or
counterexample propagation or both. Let’s assume that one of the counterexamples at (C5,A3) is
{ i ↦→ 0, sum1 ↦→ 10, j ↦→ 0, r1 ↦→ 0, r2 ↦→ 0, r3 ↦→ 10, xmm0 ↦→ 0, out1 ↦→ 0, in1 ↦→ 200, in2
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↦→ 2000, LEN ↦→ 12, HC
3 ↦→ (0 ↦→ 10, 200 ↦→ 1, 204 ↦→ 2, 208 ↦→ 3, 212 ↦→ 4, 2000 ↦→ 5, 2004 ↦→

6, 2008 ↦→ 7, 2012 ↦→ 8, () ↦→ 0), HA ↦→ (0 ↦→ 10, 200 ↦→ 1, 204 ↦→ 2, 208 ↦→ 3, 212 ↦→ 4, 2000 ↦→
5, 2004 ↦→ 6, 2008 ↦→ 7, 2012 ↦→ 8, () ↦→ 0), . . .}.
This counterexample would traverse the path (A3-A3) in program 𝐴 because it satisfies the cor-
responding path condition, (r2 + 4 ̸= LEN). However, of the 13 candidate pathsets in 𝐶 , only 5
would be taken by this counterexample (those that end at C5 at different unrollings and 𝜖 path).
Thus, path condition pruning reduces the candidate correlations from 13 to 5 based on just a single
counterexample in this case.

3.10.2 Counterexample-Guided Ranking. After path condition pruning, we are left with five can-
didate correlations for (A3-A3), namely 𝜖 , (C5-C5), (C5-C5)2, (C5-C5)3, and (C5-C5)4. Thus,
we create five different product-CFGs, each with a different newly added product-CFG edge
𝜔 = (C5, A3)→ (C5, A3) (the difference is in the correlated pathset), and add all the five product-
CFGs to the backtracking search tree. Further, for each of the newly created product-CFGs, we
propagate the counterexamples at (C5,A3) across 𝜔 , adding more counterexamples to (C5,A3).
Notice that these added counterexamples would be different for each of the product-CFGs because
they would have traversed different program paths in 𝐶 before being added to the product-CFG
node (C5,A3).
For example, for the product-CFG that correlates (A3-A3) with (C5-C5)2, the counterexample

discussed in section 3.10.1 would yield a new propagated counterexample at (C5,A3) obtained by

simply propagating it once over the newly added product-CFG edge 𝜔 = ((A3 − A3), (C5 − C5)2):
{ sum1 ↦→ 27, j ↦→ 2, r2 ↦→ 4, r3 ↦→ 10, xmm0 ↦→ 0x20000000150000000C00000005, . . .}.
Similarly, for the product-CFG that correlates (A3-A3) with (C5-C5)4, the counterexample after
propagating once would be:
{ sum1 ↦→ 80, j ↦→ 4, r2 ↦→ 4, r3 ↦→ 10, xmm0 ↦→ 0x20000000150000000C00000005, . . .}.

After propagation, we compute the strongest invariant cover for the updated set of counterex-
amples at (C5,A3) for each of the five candidate product-CFGs. Now, we claim that for the correct
correlation, the updated invariant cover at (C5,A3) would likely relate more variables in 𝐴 to
variables in𝐶 through affine relations. Conversely, for incorrect correlations, the invariant cover at
(C5,A3) would likely relate fewer variables in𝐴. To see this more concretely, consider the live vari-
ables xmm00, xmm01, xmm02, and xmm03 in𝐴, where xmm0𝑖 is shorthand for xmm0[(32*𝑖+31):(32*𝑖)].
For the incorrect correlations, only some of these four variables may get related by the invariant
cover at (C5,A3) Ð e.g., for the product-CFG that correlates (A3-A3) with (C5-C5)2, the variables
xmm00 and xmm01 would be related to sum1 through (sum1 = xmm00 + xmm01 + r3), but xmm02 and
xmm03 would not get related to any variables in 𝐶 . However, for the product-CFG that correlates
(A3-A3) with (C5-C5)4, all four parts of xmm0 would get related to sum1 through the invariant
cover (sum1 = xmm00 + xmm01 + xmm02 + xmm03 + r3). For this reason, this latter product-CFG
would rank higher than the others in our algorithm. Thus, ranking helps the algorithm in arriving
at the correct correlation in the first attempt during the best-first search procedure in this example.

3.10.3 Pruning Based on Heap Relations. To demonstrate our pruning based on heap relations,
we consider a partial product-CFG such that it has almost all the required correlations, as shown
in fig. 3c, except that it has not yet correlated the pathset (A10-A2) starting at PCpair (C7,A10).
Among the various correlations for (A10-A2), two candidates are (C7-C2) and (C7-C2-C5-C7-C2).
Howeverwe see thatwhile the first candidate updates the heap only once (throughwrites to out1[i]

3The concrete state for memory array is represented using mappings of the form (addr ↦→ data), which implies that the value

(byte) stored in memory at address ładdrž is łdataž and (() ↦→ data) represents the default value łdataž for the remaining

address space.
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and out2[i]), the second candidate updates the heap twice. Thus, the latter candidate correlation
(C7-C2-C5-C7-C2) is likely to generate an invariant cover (for the propagated counterexamples)
that does not relate the two heap states HC and HA, causing it to be pruned out. In general, such
pruning is very effective in the presence of writes to heaps where the addresses of the writes cannot
be characterized at compile time. This pruning strategy is somewhat similar, albeit more flexible
and general, to the correlation strategy used in Necula’s translation validator [Necula 2000] where
the algorithm required one-to-one correspondence between accesses to the heap for correlation.

3.10.4 Contrast with SPA Algorithm. Both SPA and Counter are data-driven because they rely on
data (or counterexamples) to predict (or prioritize) the correlations through path correlations or
relations on machine state values. However, Counter represents a significant generalization and
improvement over the SPA approach because:

• Counter does not restrict the correlation condition to be one of the enumerated alignment
predicates. Instead it takes a more flexible approach where it simply uses the number of relations
in the strongest invariant cover for the concrete counterexamples known so far. This flexibility
in Counter eliminates the dependence on the availability of the required alignment predicate
(which is quite complex for the example pair of programs in fig. 3).
• Instead of proposing a single product-CFG (or PAA), Counter formulates the algorithm as a
best-first search strategy to avoid getting stuck inside a local search subspace. However, our
experiments demonstrate that the algorithm converges to the required product-CFG in the first
attempt with a very high probability (section 4).
• Correlation of pathsets (instead of individual paths) avoids the explosion in the number of
required correlations. Our experiments confirm that our method of using full pathsets at
different unroll factors (section 3.7.2) along with our correlation criterion (section 3.7.3) does
not compromise robustness.

3.11 Putting It All Together

We provide pseudo-code to tie all the sub-procedures into a single algorithm in fig. 7. The top-
level procedure bestFirstSearch() takes as arguments the two programs, 𝐶 and 𝐴, and returns
either a product-CFG that is a provable bisimulation (if proof found) or null (if the proof was
not found). This top-level procedure initializes a product-CFG 𝜋𝑖𝑛𝑖𝑡 with the start node (C0,A0)
and initializes the frontier Ω of the best-first search tree by adding a candidate correlation (as
a product-CFG edge) to 𝜋𝑖𝑛𝑖𝑡 (through call to expandProductCFG()). At each step, the best-first
search picks the most promising product-CFG 𝜋𝑐𝑢𝑟 , based on the ranking strategy described in
fig. 6, from the frontier Ω (removeMostPromising()) and łexpandsž it by adding another candidate
correlation through a new product-CFG edge to it. There are multiple possibilities for the new
candidate correlations, and all the newly created product-CFGs (if any) are added back to the
frontier. On return from the expandProductCFG(), 𝜋𝑐𝑢𝑟 is checked to see if it already yields a
provable bisimulation (ProductCFGisProvableBisim()).
The expandProductCFG() function first checks that the correlation criterion (section 3.7.3) is

met for all the edges in the input product-CFG 𝜋 , through the subroutine checkCriterionForEdges().
checkCriterionForEdges() internally checks the following condition for every product-CFG edge
𝜔 = 𝑛 → 𝑛𝑑 = (𝜉𝐶 , 𝜉𝐴): 𝐼𝑛𝑣𝑛 ⇒ (𝑝𝑠𝑐𝑜𝑛𝑑𝜉𝐴 → 𝑝𝑠𝑐𝑜𝑛𝑑𝜉𝐶 ) where 𝑝𝑠𝑐𝑜𝑛𝑑𝜉 represents the path-

set condition of pathset 𝜉 , which is equivalent to the disjunction of the path-conditions (i.e., the
weakest condition under which the path must be taken) of the individual paths in 𝜉 . The inferInvari-
antsAndCounterExamples() subroutine implements the invariant inference procedure described in
section 3.4. The findIncompleteNode() function identifies a PCpair 𝑛 = (𝑛𝐶 , 𝑛𝐴) in 𝜋 that has not yet
correlated all outgoing paths from 𝑛𝐴 in program 𝐴. If no such PCpair exists, the product-CFG is
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Function expandProductCFG(𝜋 ,𝐶 , 𝐴)

if ¬ checkCriterionForEdges(𝜋 ) then
return {}

end

inferInvariantsAndCounterExamples(𝜋 )

if ¬ ((𝑛𝐶 , 𝑛𝐴)← findIncompleteNode(𝜋 )) then
return {}

end

Σ← {}

𝜉𝐴 ← getNextPathsetRPO(𝑛𝐴 , 𝐴)

Ψ← getCandCorrelations((𝑛𝐶 , 𝑛𝐴),𝐶 , 𝜉𝐴 , 𝜇𝐶 )

foreach 𝜉𝐶 ∈ Ψ do

if actionsAreCompatible(𝜉𝐶 ,𝜉𝐴) then
𝜋𝑛𝑒𝑤 ← 𝜋

addEdgeAndPropCEs(𝜋𝑛𝑒𝑤 , (𝜉𝐶 , 𝜉𝐴))

if CEsSatisfyCorrelCriterion(𝜋𝑛𝑒𝑤 ) ∧

InvRelatesHeapsAtEachNode(𝜋𝑛𝑒𝑤 ) then
Σ← Σ ∪ 𝜋𝑛𝑒𝑤

end

end

end

return Σ

Function bestFirstSearch(𝐶 , 𝐴)
𝜋𝑖𝑛𝑖𝑡 ← initProductCFG(𝐶 , 𝐴)

Ω← expandProductCFG(𝜋𝑖𝑛𝑖𝑡 ,𝐶 , 𝐴)

while 𝜋𝑐𝑢𝑟 ← removeMostPromising(Ω) do
Ω← Ω ∪ expandProductCFG(𝜋𝑐𝑢𝑟 ,𝐶 , 𝐴)

if ProductCFGisProvableBisim(𝜋𝑐𝑢𝑟 ) then
return 𝜋𝑐𝑢𝑟 ;

end

end

return null

Function getFullPathset(𝑠 , 𝑃 , 𝜇, v)
fpset← { }

foreach o ∈ successors(𝑠 , 𝑃 ) do

if (v[o] ≥ 𝜇) then
continue //skip this edge

end

//⊙ is the serial composition operator

pth← (𝑠 → 𝑜) ⊙ getFullPathset(𝑜 , 𝑃 , 𝜇, v[o]++)

fpset← fpset ∪ { pth }

end

return makeSeriesParallelGraph(fpset)

Function getFullPathsetAtAllDeltas(𝑠 , 𝑡 , 𝑃 , 𝜇)
v← { } //visited map (count of each visited node)

paths← getFullPathset(𝑠 , 𝑃 , 𝜇, v)

return splitByNumOccurrencesOfLastPC(paths, 𝑡 )

Function getNextPathsetRPO((𝑛𝐶 , 𝑛𝐴), 𝐴, 𝜋 )
foreach ℎ𝐴 ∈ nexthops of 𝑛𝐴 in 𝐴 in RPO do

𝜉𝐴 ← getFullPathsetAtAllDeltas(𝑛𝐴 , ℎ𝐴 , 𝐴, 1)

if notAlreadyCorrelated(𝜋 , (𝑛𝐶 , 𝑛𝐴), 𝜉𝐴) then
return

eliminatePathsWithOtherAnchorNodes(𝜉𝐴)

end

end

NotReached()

Function getCandCorrelations(𝑛,𝐶 , 𝜉𝐴 , 𝜇𝐶 )
𝜅𝐶 ← {𝜖 }

foreach all anchor nodes 𝑤𝐶 in𝐶 do
S← getFullPathsetAtAllDeltas(𝑛𝐶 , 𝑤𝐶 ,𝐶 , 𝜇𝐶 )

𝜅𝐶 ← 𝜅𝐶 ∪ S

end

return cartesianProduct(𝜅𝐶 , {𝜉𝐴 })

Fig. 7. Pseudo-code of the algorithm.

already complete; in which case, we return to the caller which will eventually check if the inferred
invariants ensure equivalent observable behavior (ProductCFGisProvableBisim()).

If there exists an łincomplete nodež (i.e., a node which requires a new correlation for an outgoing
𝐴 path), 𝑛 = (𝑛𝐶 , 𝑛𝐴), we identify the next pathset 𝜉𝐴 starting at node 𝑛𝐴 in 𝐴 in RPO that has
not yet been correlated. We enumerate all possible correlations in 𝐶 for 𝜉𝐴 starting at node 𝑛𝐶 in
a set of pathsets Ψ. For each of the pathsets 𝜉𝐶 ∈ Ψ, we first check if the actions are compatible
with 𝜉𝐴 (actionsAreCompatible()), i.e., 𝜉𝐴 should execute a function call iff 𝜉𝐶 executes a function
call, as an undefined function call could potentially produce an łobservable actionž. If the action
compatibility check passes, a new product-CFG edge is created which additionally includes a new
product-CFG edge encoding the new candidate correlation between 𝜉𝐶 and 𝜉𝐴. Counterexamples are
propagated on the newly added edge (addEdgeAndPropCEs()) before applying our pruning criteria:
CurrentCEsSatisfyCorrelCriterion() implements pruning based on paths taken by counterexamples,
and InvRelatesHeapsAtEachNode() implements pruning based on heap relations. The newly-related
product-CFG 𝜋𝑛𝑒𝑤 is added to the frontier (Σ) only if both these subroutines return true.
The getCandCorrelations() subprocedure enumerates the potential correlations at node 𝑛 =

(𝑛𝐶 , 𝑛𝐴) for pathset 𝜉𝐴 in 𝐴 by enumerating the outgoing pathsets from 𝑛𝐶 in 𝐶 (including the
empty path 𝜖). Similarly, getNextPathsetRPO() identifies the first nexthop anchor node, ℎ𝐴, of 𝑛𝐴
in 𝐴 in RPO such that the full pathset from 𝑛𝐴 to ℎ𝐴 (at unroll factor 1) has not already been corre-
lated in 𝜋 (notAlreadyCorrelated()). Both getCandCorrelations() and getNextPathsetRPO() employ
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the getFullPathsetAtAllDeltas() subroutine to enumerate the full pathset starting at node 𝑠 and
ending at node 𝑡 in CFG 𝑃 for a given unroll factor 𝜇. getNextPathsetRPO() additionally eliminates
those paths that are incident to other anchor nodes in 𝐴 (eliminatePathsWithOtherAnchorNodes()).
The getFullPathsetAtAllDeltas() subroutine returns FPsets

𝜇
𝑠⇝𝑡 (set of pathsets) where each indi-

vidual pathset represents FP
𝜇,𝛿
𝑠⇝𝑡 , one for each value of 𝛿 such that 1 ≤ 𝛿 ≤ 𝜇. The helper function

(getFullPathset()) enumerates the successor nodes of 𝑠 in 𝑃 (successors()), recursively calling itself
for each successor node after updating the visited map v (by incrementing the count of node in
v). The returned pathsets from the successor nodes are then composed in parallel and compacted
at each step into a series-parallel digraph representation (makeSeriesParallelGraph()). Finally, the
returned pathset is split into multiple pathsets such that each new pathset has an identical number
of occurrences of 𝑡 in all its constituent paths (splitByNumOccurrencesOfLastPC()).
For the ranking procedure to be effective, we would ideally prefer that the set of of counterex-

amples Γ𝑛 has high coverage Ð e.g., the matrix formed by bitvector counterexamples as its rows
should have a large number of linearly-independent rows. Thus, it is important that all counterex-
amples generated (or propagated) so far are considered before the ranking procedure is used. To
implement this, we recompute the promise of each candidate correlation after every addition to the
counterexample set. For example, if the call to inferInvariantsAndCounterExamples() changes the
rank of 𝜋𝑐𝑢𝑟 (due to the newly inferred counterexamples), we discard it in favour of the new most
promising correlation. For simplicity, this optimization has not been shown in the pseudocode in
fig. 7.

4 EVALUATION

4.1 Implementation

For evaluation, we compare equivalence between unoptimized LLVM IR generated from the input
C program and a corresponding optimized x86 assembly implementation (compiler-generated or
manually programmed). We have implemented symbolic executors for both LLVM IR and x86,
to convert the two representations to 𝐶 and 𝐴 CFGs. For the x86 executable, we use the symbol
table and the relocation headers to identify the locations and (potentially offseted) accesses to
global variables. The edge condition and transfer function for each CFG edge is encoded as an
SMT expression involving bitvectors (for variables and registers), arrays (for memory states), and
uninterpreted functions (for undefined procedure calls).
Before we run the bestFirstSearch() procedure in fig. 7 on the obtained CFGs, 𝐶 and 𝐴, we run

some static analyses on the individual CFGs:

(1) For 𝐴, we perform a forward dataflow analysis to identify all register values that are always at
a constant offset from the input stack pointer at function entry. We classify such stack locations
as stack slots and consider their values as bitvector variables during invariant inference and
alias analysis.

(2) We run a forward points-to, intra-procedural, flow-sensitive, field-insensitive, untyped dataflow
analysis to compute aliasing information for each program value at each program point in
both 𝐶 and 𝐴; the range of our points-to set includes each global variable (separately), a single
stack region, and a single allocated-heap region4. Our sound and overapproximate points-to
analysis algorithm is somewhat similar to the algorithm described in [Dahiya and Bansal 2017b;
Debray et al. 1998] and involves identifying 𝐶’s based-on relationships (§6.7.3.1 in [ISO 2011])
and tracking the flow of values. Our memory model for C is based on [Besson et al. 2014]’s
proposal. We conservatively assume that the input arguments to a procedure can point to either
the globals or the allocated-heap.

4We distinguish łallocated-heapž from our use of the word łheapž in the paper; the latter also includes global variables.
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(3) We run a few standard dataflow analyses including available-expressions and liveness for both
𝐶 and 𝐴; for available expressions, we encode the results as node invariants to supplement our
invariant inference algorithm.

(4) We run a must-reach definitions analysis [Aho et al. 2006] on 𝐶 and during invariant inference,
consider only those SSA bitvector variables at a node 𝑛 whose definition must reach 𝑛.

For the restricted class of programs we consider (e.g., no address-taken local variables), our
points-to analysis is able to categorize every memory access as either accessing only the stack
region, or definitely not accessing the stack region (i.e., accessing global(s) or allocated-heap). This
allows us to model these two regions as separate arrays during discharge of proof obligations, just
before transmitting the proof query to the SMT solvers.
For every SMT proof obligation generated by Counter, three off-the-shelf SMT solvers are

spawned in parallel: z3-4.8.7, Yices2-45e38fc, and cvc4-1.7. For unsat results, we return as
soon as the first solver finishes. For sat results, we opportunistically try and collect multiple
counterexamples (to aid our counterexample-driven procedures): we wait for the first solver to
finish; if the first solver finishes with a sat result in time 𝑡 , then we wait till time 2∗𝑡 and return the
counterexamples generated by all solvers that finished in time 2 ∗ 𝑡 (thus doubling our query times
in the worst case). To avoid SMT solver timeouts, we employ the query decomposition technique
from [Gupta et al. 2018]. In addition to improving efficiency and providing more counterexamples,
employing multiple SMT solvers also improves the reliability of our verifier because it allows
cross-checking of the results of one SMT solver against another. In fact, we found a bug in Yices
during our experiments, which was fixed immediately upon reporting [yic 2020].

4.2 Experimental Setup

We evaluate Counter on a set of benchmarks involving extensive loop and vectorization optimiza-
tions, which include all the benchmarks used in the SPA paper [Churchill et al. 2019]. In addition
to the examples in figs. 1 to 3, our evaluation involves two sets of benchmarks: the first set of
benchmarks includes programs (C functions) from the TestSuite for Vectorizing Compilers (TSVC)
[Maleki et al. 2011], and the second set of benchmarks is a set of 27 distinct vectorizable loop
patterns that we have mostly taken from the LORE repository [Chen et al. 2017]. These programs
usually operate on statically-allocated fixed size global arrays of integers. We compiled all programs
using recent versions of production compilers, namely, GCC-8, Clang/LLVM-11, and ICC-18.0.3 with
-O3 -msse4.2 compiler flags to generate optimized x86 binaries. For our experimental evaluation
with each compiler, we select only those functions that are vectorized by that compiler. For each of
these compiler-function pairs, we attempt to prove equivalence across the unoptimized LLVM IR
(generated by clang -O0) and assembly programs generated by an optimizing compiler. We use a
global timeout of five hours for each function, an SMT-solver timeout of five minutes for each SMT
proof query, and a memory limit of 12GB for a single equivalence check.
Both GCC and ICC perform loop unrolling with a maximum unroll factor of four, while LLVM

uses an unroll factor of eight. Thus, we need 𝜇𝐶 = 8 for GCC and ICC and we need 𝜇𝐶 = 16 for
LLVM. Notice that the required value of 𝜇𝐶 needs to be at least twice the unroll factor used by the
compiler, to be able to handle the cool-down loops in the vectorized assembly programs. This can
be seen using a simple vectorization example shown in fig. 8. In the assembly program 𝐴 of this
example, the path from the loop head to the program exit (A5-EA) involves four unrolled iterations
of the original loop body followed by up to three residual iterations before reaching program exit.
Thus, this path will be correlated with seven iterations of the original loop in 𝐶 (which can be
captured only at 𝜇𝐶 ≥ 7) when the compiler used an unroll factor of four. In general, we find that
𝜇𝐶 = 2 ∗ 𝜇𝑜 suffices where 𝜇𝑜 represents the unroll factor used by the optimizing compiler.
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C0: void init1d(int n) {

C1: for (int i = 0; i < n; i++)

C2: a[i] = b[i];

C3: }

(a) C program

A0: init1d:

A1: r1 = 0

A2: if (n <= 0) ret

A3: r2 = n % 4, r3 = n - r2, r4 = 0

A4: if (r3 == 0) goto A8

A5: a[r4, .. r4+3] = b[r4, .. r4+3]

A6: r4 += 4

A7: if (r4 != r3) goto A5

A8: if (r2 >= 1) { a[r4] = b[r4]; r4++ }

A9: if (r2 >= 2) { a[r4] = b[r4]; r4++ }

A10: if (r2 == 3) { a[r4] = b[r4]; r4++ }

A11: ret

(b) (Abstracted) Assembly code

C0,A0 C1,A5 EC,EA
A0-A2-A4-A5

C0-C1

A5-EA

(C1-C1)4-((C1-C1)3+(C1-C1)2+(C1-C1)+ǫ)-EC

A5-A5

(C1-C1)4

A0-A2-EA

C0-C1-EC

A0-A4-A8-EA

((C1-C1)3+(C1-C1)2+(C1-C1)+ǫ)-EC

(c) Product-CFG

Fig. 8. C program, its abstracted assembly after loop

unroll and vectorization, and the product-CFG

Table 2. Results for TSVC functions and LORE loop nest patterns.

TSVC functions
demonstrated by prior
work

TSVC functions not
demonstrated by prior
work

LORE Loop Nests

All loops have
memory write

At least 1 loop
with no mem-
ory write

gcc llvm icc gcc llvm icc 𝜇𝑜4 𝜇𝑜8 𝜇𝑜4 𝜇𝑜8

Total/Failing functions 28/1 28/0 28/3 28/7 30/4 60/22 11/0 11/0 16/0 16/0
Avg/Max ALOC 16/44 19/51 19/40 25/64 31/72 29/95 19/28 24/53 29/48 37/100
Avg/Max # of product-CFG nodes 3/4 3.1/5 3.2/5 3.5/5 3.4/5 3.5/6 4.4/7 4.4/7 4.8/7 5/8
Avg/Max # of product-CFG edges 3.2/7 3.3/7 3.6/9 4/7 3.9/8 4.2/11 5.2/9 5.2/9 5.9/9 6.8/18
Avg # of total CEs / node 17 27 16 18 28 18 16 24 20 30
Avg # of gen. CEs / node 13 22 11 12 22 13 10 17 10 16

BFS

Avg equivalence time (seconds) 209 70 15 201 3842 110 107 2243 131 676
Avg # of paths enumerated 44 89 53 95 160 103 179 344 232 469
Avg # of paths pruned 28 45 32 49 80 54 66 98 130 251
Avg # of paths expanded 3.3 3.9 3.8 4.6 5.3 5.8 7.1 8.5 8.9 14.8

DFS
Memory/timeout reached 0 2 0 1 6 1 0 1 12 16
Avg # of paths enumerated 173 3904 315 5776 14992 2635 301 561 17518 27727
Avg # of paths expanded 35 252 52 518 913 262 111 208 4582 3781

Avg # of paths expanded DFS/BFS 11 65 14 113 172 45 16 24 515 255

4.3 Results

Benchmark Categories. Table 2 tabulates the results of our experiments. We divide our benchmarks
into three categories: (1) 28 TSVC functions that were a part of the benchmarks evaluated by
[Churchill et al. 2019]; (2) TSVC functions for which Counter is the first to automatically generate
equivalence proofs (they were not included in [Churchill et al. 2019] benchmarks); and (3) loop nest
patterns taken from the LORE repository. For TSVC benchmarks, we present results for all three
compilers. For LORE loop nests, we use one representative pattern for a set of structurally-similar
program/transformation pairs, irrespective of the compiler that generated it. The space of additional
transformations performed in this category (that are not covered by the first two categories) include
loop splitting, loop fusion for bounded number of iterations, loop unswitching, and summarization
of loop with small and constant bounds. The number of loops per function and maximum loop
nesting depth varies between one and three for the loop patterns in this last category.
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Table 3. List of passing vectorized TSVC functions. ✗denotes equivalence check failure for that

function-compiler pair and ⊗ denotes that the function is not vectorized by that particular compiler.

TSVC functions demonstrated by prior work TSVC functions not demonstrated by prior work

Name ALOC Name ALOC Name ALOC Name ALOC

gcc llvm icc gcc llvm icc gcc llvm icc gcc llvm icc

s000 11 13 15 s243 21 51 ✗ s111 28 ⊗ ⊗ s271 ⊗ 43 19

s1112 12 17 ✗ s251 11 15 15 s1111 20 ⊗ 30 s2710 ⊗ ⊗ 44

s112 22 8 12 s3251 44 50 39 s1115 ⊗ ✗ 28 s2711 ⊗ 47 21

s121 18 32 20 s351 28 17 ✗ s1119 ✗ 14 ⊗ s2712 ⊗ 43 19

s122 17 17 24 s452 14 19 18 s113 20 ⊗ 23 s272 ⊗ ⊗ 26

s1221 9 8 13 s453 11 13 15 s114 ⊗ ⊗ 50 s273 ⊗ 53 25

s1251 13 12 17 sum1d 15 16 18 s116 ⊗ 17 ⊗ s274 ⊗ ⊗ 23

s127 17 18 23 vdotr 17 19 21 s1161 ⊗ ⊗ 46 s276 ⊗ ⊗ 29

s1281 17 15 21 vpv 9 11 13 s119 27 31 28 s293 ⊗ ⊗ 13

s1351 9 11 13 vpvpv 10 13 14 s1213 ⊗ ⊗ 37 s311 15 15 19

s162 43 37 40 vpvts 12 15 16 s124 18 24 20 s3111 19 20 24

s173 9 8 15 vpvtv 10 13 14 s125 24 20 25 s319 22 30 27

s176 ✗ 21 22 vtv 9 11 13 s1279 ⊗ 47 22 s352 ⊗ 22 ⊗

s2244 24 47 28 vtvtv 10 13 14 s128 20 ⊗ 23 s4115 ⊗ ⊗ 32

s131 15 29 20 s421 25 48 29

s132 28 43 26 s423 33 46 29

s1421 24 25 40 s441 28 ⊗ 34

s171 ⊗ 29 ✗ s442 ⊗ ⊗ 49

s174 64 35 52 s443 17 ⊗ 25

s2233 39 ✗ ✗ s471 28 26 ✗

s252 ⊗ 18 ⊗ va 8 9 12

s253 ⊗ ⊗ 24 vbor ✗ ✗ 95

s254 ⊗ 8 12 vif ⊗ 72 17

Success and Failures. Among the first set of benchmarks (28 TSVC functions that were evaluated
by [Churchill et al. 2019]), and across optimizations performed by the three compilers (for a total
of 84 program pairs), Counter is able to compute equivalence proofs for all but four of these
program pairs (see row Failing functions of table 2). Three of the remaining four program
pairs Ð s176 compiled with GCC, s1112, and s243 compiled with ICC Ð involve non-bisimilar
transformations, namely loop tiling and interchange, which are beyond the scope of Counter’s
algorithm. We confirm that the SPA algorithm is also unable to compute equivalence proofs across
these three program pairs, and the reason these were reported as successful equivalence checks in
their paper [Churchill et al. 2019] is because the authors used older compiler versions (which did
not perform such transformations for these functions). One program pair (s351 when compiled
with ICC) involves loop re-rolling which is out of scope for Counter. The next table row shows the
average and maximum Assembly Lines of Code (ALOC) in the optimized assembly program across
all these functions. It is important to note that the C source code for all these 28 functions involve
only a single loop and involve no control flow within their loop bodies.
We next consider the remaining TSVC functions (our second set of benchmarks) and report

only those program-pairs that involve some form of vectorization in their optimized assembly
code. There are 28, 30, and 60 such program pairs (where vectorization was involved) for GCC,
LLVM, and ICC respectively. Of these, Counter is able to compute equivalence for all but 7, 4,
and 22 program-pairs respectively. The primary cause for equivalence failures is the presence of
non-bisimilar transformations, namely loop interchange, fission, fusion, tiling, acceleration; an
unbounded number of memory writes are reordered through such transformations and so these
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C0: int loopSplitting () {

C1: int sum = 0;

C2: int mid = LEN/2;

C3: for (int i = 0; i < LEN; i++) {

C4: if (i < mid) sum += c[a[i]];

C5: if (i >= mid) sum += b[i];

c6: }

C7: return sum;

C8: }

(a) C program.

LEN is a positive multiple of 4.

A0: loopSplitting:

A1: r1 = 0; r2 = 0;

A2: r2 += c[a[r1]]

A3: r1++

A4: if (r1 != mid) goto A2

A5: r1 = &b[mid]; r3 = &b[LEN]; xmm0 = 0

A6: xmm0 += *r1, .., *(r1+12)

A7: r1 += 16

A8: if (r1 != r3) goto A6

A9: xmm0 += (xmm0 >> 8) // shift right by 8 bytes

A10: xmm0 += (xmm0 >> 4) // shift right by 8 bytes

A11: r2 += xmm0 [31:0]

A12: ret r2

(b) (Abstracted) Assembly code after loop splitting and

unswitching

C0,A0 C3,A2 C3,A6 EC,EA
A0-A2

C0-C3

A2-A2

(C3-C4-C3)

A2-A6

C3-C4-C3

A6-A6

(C3-C5-C3)4

A6-EA

(C3-C5-C3)4-EC

(c) Product-CFG

Fig. 9. C code before and after optimizations for an example loop nest

equivalences are difficult to establish through bisimulation relations. Only four of these failures (one
each in GCC and LLVM, and two in ICC) are due to SMT solver timeouts during invariant inference.
It is interesting to note that ICC is able to perform vectorization for a larger number of programs
(60 vs. 30) and that most such vectorizations involve non-bisimilar transformations (20 failures).
Importantly, compilations of these TSVC functions are among the most challenging program-pairs
for equivalence checking. Among the function-compiler pairs for which Counter successfully
computes equivalence for: (1) six functions contain more than one loop in function body; (2) six
functions have nested loops of depth up to 2; (3) one function has both nested loops and multiple
outer loops; (4) nineteen functions have control flow inside the loop body; (5) eight functions
use multi-dimensional arrays potentially involving non-regular memory accesses; and (6) eleven
functions have at least one loop without a memory write. Recall that correlation identification
becomes easier if all program loops contain updates to the heap memory, because our pruning
based on heap relations is then able to reduce the search space. Table 3 lists out the TSVC functions
for which equivalence could be established by Counter.

Our third set of benchmarks include 16 different loop nest patterns. For each of these 16 patterns,
we test two variations: one where the loop bodies involve a memory write, and another where at
least one of the loop bodies does not involve a memory write. Among the 16 variations that involve
a memory write in the loop bodies, the compilers produce non-bisimilar transformations for five of
them. Thus we show results for 11 loop nest patterns where loop bodies have memory writes, and
16 loop nest patterns where the loop bodies don’t have memory writes. Further, for each loop nest
variation, we test across two different unroll factors (𝜇𝑜 = 4 and 𝜇𝑜 = 8). The patterns with unroll
factor 8 are due to compilations generated by LLVM or by GCC with the appropriate pragma switch.
Counter is able to compute the required equivalence proof for all these (16+11)*2=54 program
pairs. As an example of the complexity of transformations involved, fig. 9 shows the product-CFG
generated by Counter for the program-pair involving multiple transformations including loop
splitting, loop unswitching, unrolling, and vectorization. Most of these source programs (16 out of
27 total) have multiple loops with potential nesting (and different variables in each loop); we find
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that SPA’s grammar is inadequate for guessing the alignment predicate in these cases. Moreover, 17
benchmark programs use multi-dimensional arrays which are out of scope for the SPA algorithm.
Six benchmark programs have control flow inside the loop body for both source and generated
assembly program, and it may be difficult and expensive to identify execution traces with adequate
code coverage in such programs (as required by SPA).
Equivalence Checking Statistics. Table 2 also shows the average and maximum number of nodes
and edges in the product-CFG generated by Counter for each benchmark category. Further, it
shows the average number of counterexamples per final product-CFG node (Avg # of total

CEs/node) and the average number of counterexamples that were generated (not propagated) per
node through SMT queries (Avg # of gen. CEs/node). The next row (in category BFS which
stands for best-first search) lists the average time taken to generate an equivalence proof in each
category (Avg equivalence time). The next three rows demonstrate statistics for the best-first
search (BFS) algorithm: we list the number of correlation possibilities that were created (paths
enumerated) before the complete product-CFG was found, the number of correlation possibilities
that were remaining after pruning (paths pruned) and the number of correlation possibilities
which were actually expanded further (paths expanded). This last metric is a measure of the
effectiveness of our ranking strategy: the table shows that the average number of paths expanded
is small, and usually close to the average number of total product-CFG edges. Because each time
a product-CFG correlation is expanded, we add an edge to the product-CFG: this confirms that
in most cases, the correct correlation is ranked and picked first at each step of the backtracking
search. In other words, our ranking strategy ensures that there is minimal backtracking, if any.
Comparison with a Static Strategy. The three rows labeled DFS (for depth-first search) demonstrate
the results with a backtracking-based strategy relying on the static heuristic, where counterexample-
guided pruning and ranking is omitted. This static backtracking strategy resembles the depth-first
search approach, also used in [Dahiya and Bansal 2017a], as one part of the search tree is exhausted
(depth-first) before another part of the subtree is attempted. We find that the average number of
paths expanded in DFS is up to 515x more than the average number of paths expanded in BFS
(last row in table 2); this is evidently due to the extra backtracking that occurs in the DFS strategy.
In fact, the DFS strategy runs out of either time or memory resources for 39 of the 219 program
pairs for which BFS is able to successfully establish equivalence (Memory/timeout reached). It is
worth noting that these improvements produced by our pruning and ranking strategies are more
pronounced in programs involving loops which do not update memory in their loop bodies. For
loops that update memory in their bodies, the InvRelatesHeapsAtEachNodes() check (in fig. 7) allows
early backtracking in situations where an incorrect correlation is chosen.
Comparison of SMT Solvers. Recall that Counter uses three off-the-shelf SMT solvers Ð Z3, Yices2,
and CVC4 Ð that execute in parallel to discharge each SMT proof obligation. It is interesting to note
that different SMT solvers exhibit significantly different behavior in our experiments: while Yices2
is usually much faster at discharging SMT queries (around 98% of queries are first answered by
Yices2), the other two solvers actually produce łbetterž counterexamples (satisfying assignments)
for our equivalence procedure.

To see this with an example: let’s say at some node 𝑛 in the partial product-CFG, there exist two
unconstrained and independent 32-bit variables 𝑥 and 𝑦. Also assume that we obtain (0, 0) (short
for {x ↦→ 0,y ↦→ 0}) as the first satisfying assignment (counterexample) through an incoming
edge at 𝑛. The strongest invariant cover inferred by our algorithm for this counterexample will be
(𝑥 = 0)∧ (𝑦 = 0). Now assume that the next query to the SMT solver generates an assignment that
does not satisfy this inferred invariant, and let’s say we get another counterexample (0, 231). With
these two counterexamples obtained so far, the strongest invariant cover will now be weakened to
(𝑥 = 0)∧(2𝑦 = 0). Repeating this, let’s assume that the third counterexample that we obtain through
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C1: void *memccpy(void *dst , const void *src ,

int c, size_t count) {

C2: char *a = dst;

C3: const char *b = src;

C4: while (count --) {

C5: *a++ = *b;

C6: if (*b == c)

// missing (unsigned char) type casts; (*b) will

// get sign -extended before comparison and thus

// may not be equal to c when sign bit is set

C7: return (void *)a;

C8: b++;

C9: }

C10: return 0;

C11: }

const char src[] = { 255, 128 };

char dst[2] = { 'A', 'B' };

memccpy(dst , src , 255, 2);

if (dst[1] != 'B')

printf("BUG!")

Fig. 10. diet libc bug. Left: memccpy function. Right: Sample input for triggering the bug.

the SMT solver query is (0, 230); now, the new invariant cover would become (𝑥 = 0) ∧ (4𝑦 = 0).
This pattern of counterexamples where the satisfying assignments are successively decreasing
powers of 2 can potentially go on Ð notice that for this pattern of counterexamples returned by
the SMT solver, we would require 64 SMT queries before reaching the desired invariant, i.e., True
(recall that 𝑥 and 𝑦 are unconstrained and independent). On the other hand, if the SMT solver had
returned counterexamples (0, 0), (3, 5), and (5, 7) in the first three SMT queries, we would have
inferred the required invariant True within just three queries. Thus, the speed of our algorithm
also depends on the łqualityž of counterexamples returned by the SMT solver.
It turns out that Yices2 is more prone to the former behavior (returning counterexamples that

involve decreasing powers of 2), even though it is faster in discharging the individual queries than
Z3 and CVC4. This observation motivated our opportunistic counterexample collection scheme
described in section 4.1, wherein we opportunistically try to collect counterexamples from multiple
solvers for sat results.
Other Explorations. In addition to these benchmarks, we have applied Counter for verifying equiva-
lence of several benchmarks including all the examples used in previous papers on equivalence
checking [Churchill et al. 2019; Dahiya and Bansal 2017a; Kiefer et al. 2018]. We have also applied
Counter to verify libc string functions implementations, and in one such experiment, we compared
the OpenBSD [ope 2020] libc implementation against diet libc [die 2020]. Through this exercise, we
uncovered three subtle and serious bugs in diet libc implementation, one of them shown in fig. 10;
these bugs were acknowledged and fixed by diet libc developers immediately upon reporting. All
of the three bugs were related to missing type casts in the C code. Surprisingly, these bugs had
escaped years of testing and deployment.

4.4 Limitations

The Counter algorithm is not without limitations. The primary limitation arises from the assumption
associated with Observation-D in section 1. Consider the example pair of programs in fig. 11. In this
example, the two near-identical loops in 𝐶 are transformed into a single loop in 𝐴. Here, the path
(A1-A2) in 𝐴 needs to be correlated with two distinct full pathsets in 𝐶: (C1-C2) and (C1-C4).
Notice that this violates Observation-D because the two pathsets in 𝐶 have different endpoints,
C2 and C4. Because our algorithm only correlates a pathset in 𝐴 with a single full pathset in 𝐶

(section 3.7.3), it will be unable to identify the required product-CFG in this case. It is possible
to relax this correlation condition in our algorithm and allow a pathset in 𝐴 to correlate with
multiple pathsets in𝐶 . Such choices should carefully balance the algorithm’s common-case running
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C1: if (a)

C2: while (i < m) S;

C3: else

C4: while (i < n) S;

A1: mn = a ? m : n;

A2: while (i < mn) S;

Fig. 11. Example program-pair where Counter will report false equivalence failure

time against its ability to handle these corner cases. We justify our chosen correlation criterion by
observing that such corner cases are rare in practice.
Further, because our algorithm is only interested in identifying bisimulation relations, a whole

class of transformations that do not preserve program-structure (aka non-bisimilar transformations)
are out of scope for our algorithm. Some examples of non-bisimilar transformations are loop fusion,
loop fission, loop interchange, and loop tiling.
Finally, Counter is unable to compute equivalence if the unrolling performed in the compiler

transformation is out of range of the 𝜇𝐶 value considered in the algorithm. Larger 𝜇𝐶 values result
in larger sets of possible correlations at each step, and thus potentially make the equivalence
checking algorithm slower. As we discuss in our experiments, we find that 𝜇𝐶 = 16 suffices for the
transformations produced by GCC, LLVM, and ICC compilers. We must point out that Counter
only unrolls paths in 𝐶 through 𝜇𝐶 , and does not unroll paths in 𝐴 Ð this may be inadequate for
computing equivalence across certain types of loop re-rolling transformations.
During an equivalence check, most of the time is spent in discharging SMT proof obligations.

We believe that future work towards making this proof effort more efficient would enable the
equivalence checker scale to larger programs and across more complex transformations.

5 MORE RELATED WORK AND CONCLUSION

Translation validation across a selected set of transformation passes within a compiler has been
previously demonstrated in different contexts [Barrett et al. 2005; Kanade et al. 2009; Kundu et al.
2009; Leung et al. 2015; Lopes and Monteiro 2016; Necula 2000; Poetzsch-Heffter and Gawkowski
2005; Stepp et al. 2011; Tate et al. 2009; Tristan et al. 2011; Zaks and Pnueli 2008; Zuck et al. 2003,
2005]. There have also been efforts aimed at various other applications of equivalence checking
[Felsing et al. 2014; Lahiri et al. 2012; Strichman and Godlin 2008]. Our work fits in the category
of recent efforts on comparing equivalence at the assembly level [Churchill et al. 2019; Dahiya
and Bansal 2017a,b; Sharma et al. 2013], broadly categorized as the blackbox equivalence checking
approach. Unlike [Sharma et al. 2013], we do not assume access to concrete execution traces on
user-provided test inputs. Unlike [Dahiya and Bansal 2017a,b] which compares equality of edges for
correlation, our correlation algorithm is more general because we use a one-way implication check
on pathsets. Throughout the paper, we compare extensively with the semantic alignment paper
[Churchill et al. 2019]. In section 4, we also compare with the depth-first search approach used in
[Dahiya and Bansal 2017a]. Producing witnesses [Namjoshi and Zuck 2013] during optimization
is another competing approach to a blackbox equivalence checking approach like ours; unlike a
witness-based approach that places extra burden on the compiler developers, a blackbox approach
is more automated. To our knowledge, Counter is the first algorithm that achieves robust and
efficient equivalence checking across vectorizing transformations in the presence multiple loops in
both programs with potentially distinct register allocations.
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